
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888658/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 2014, 204, 250-272.	7.8	1,465
2	Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors, 2012, 12, 7207-7258.	3.8	488
3	Oxygen sensors: Materials, methods, designs and applications. Journal of Materials Science, 2003, 38, 4271-4282.	3.7	424
4	Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sensors and Actuators B: Chemical, 2019, 301, 126845.	7.8	416
5	Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sensors and Actuators B: Chemical, 2019, 286, 624-640.	7.8	410
6	Solid‧tate Gas Sensors: A Review. Journal of the Electrochemical Society, 1992, 139, 3690-3704.	2.9	366
7	Bismuth oxide-based solid electrolytes for fuel cells. Journal of Materials Science, 1994, 29, 4135-4151.	3.7	234
8	Characterization of Submicron Particles of Tetragonal BaTiO3. Chemistry of Materials, 1996, 8, 226-234.	6.7	229
9	Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 2012, 38, 4421-4435.	4.8	215
10	Ceramics for chemical sensing. Journal of Materials Science, 2003, 38, 4611-4637.	3.7	207
11	Composite n–p semiconducting titanium oxides as gas sensors. Sensors and Actuators B: Chemical, 2001, 79, 17-27.	7.8	206
12	A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sensors and Actuators B: Chemical, 2011, 156, 505-509.	7.8	202
13	Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide. Journal of the American Ceramic Society, 1992, 75, 2964-2968.	3.8	199
14	Hydrothermal Synthesis and Dielectric Properties of Tetragonal BaTiO3. Chemistry of Materials, 1994, 6, 1542-1548.	6.7	197
15	Titanium dioxide based high temperature carbon monoxide selective sensor. Sensors and Actuators B: Chemical, 2001, 72, 239-248.	7.8	194
16	Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensors and Actuators B: Chemical, 2013, 188, 902-908.	7.8	186
17	High-Temperature Ceramic Gas Sensors: A Review. International Journal of Applied Ceramic Technology, 2006, 3, 302-311.	2.1	164
18	Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensors and Actuators B: Chemical, 2016, 230, 330-336.	7.8	161

#	Article	IF	CITATIONS
19	Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: A review. Sensors and Actuators B: Chemical, 2019, 295, 127-143.	7.8	150
20	Pyrolysis of Negative Photoresists to Fabricate Carbon Structures for Microelectromechanical Systems and Electrochemical Applications. Journal of the Electrochemical Society, 2002, 149, E78.	2.9	138
21	Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures:Â Optimization of a Carbon Monoxide Sensor. Journal of Physical Chemistry B, 1999, 103, 4412-4422.	2.6	136
22	Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sensors and Actuators B: Chemical, 2009, 136, 138-143.	7.8	136
23	Review of zirconia-based bioceramic: Surface modification and cellular response. Ceramics International, 2016, 42, 12543-12555.	4.8	129
24	ZnO sol–gel derived porous film for CO gas sensing. Sensors and Actuators B: Chemical, 2003, 96, 717-722.	7.8	125
25	Aluminum-doped TiO2 nano-powders for gas sensors. Sensors and Actuators B: Chemical, 2007, 124, 111-117.	7.8	122
26	Editors' Choice—Critical Review—A Critical Review of Solid State Gas Sensors. Journal of the Electrochemical Society, 2020, 167, 037570.	2.9	112
27	Electrical properties of high-temperature oxides, borides, carbides, and nitrides. Journal of Materials Science, 1995, 30, 1627-1641.	3.7	110
28	Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sensors and Actuators B: Chemical, 2020, 305, 127455.	7.8	109
29	TiO2–SnO2 nanostructures and their H2 sensing behavior. Sensors and Actuators B: Chemical, 2005, 108, 29-33.	7.8	105
30	Ceramic electrolytes and electrochemical sensors. Journal of Materials Science, 2003, 38, 4639-4660.	3.7	92
31	Electrical Resistivity of Titanium Diboride and Zirconium Diboride. Journal of the American Ceramic Society, 1995, 78, 1380-1382.	3.8	89
32	Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments. Sensors and Actuators B: Chemical, 2002, 82, 142-149.	7.8	75
33	Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process. Journal of Alloys and Compounds, 2015, 618, 455-462.	5.5	75
34	Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures. Sensors, 2014, 14, 14586-14600.	3.8	73
35	Sensing Mechanism of a Carbon Monoxide Sensor Based on Anatase Titania. Journal of the Electrochemical Society, 1997, 144, 1750-1753.	2.9	69
36	Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sensors and Actuators B: Chemical, 2012, 165, 13-18.	7.8	69

#	Article	IF	CITATIONS
37	In-situ fabricated gas sensors based on one dimensional core-shell TiO2-Al2O3 nanostructures. Sensors and Actuators B: Chemical, 2017, 238, 972-984.	7.8	64
38	Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study. Sensors and Actuators B: Chemical, 2017, 241, 99-108.	7.8	63
39	Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sensors and Actuators B: Chemical, 2001, 80, 234-242.	7.8	60
40	Microwave Dielectric Properties of Doped BaTi4O9. Journal of the American Ceramic Society, 1991, 74, 1894-1898.	3.8	59
41	Hierarchical structured TiO2 nano-tubes for formaldehyde sensing. Ceramics International, 2012, 38, 6341-6347.	4.8	57
42	Zinc Oxideâ€Based Acetone Gas Sensors for Breath Analysis: A Review. Chemistry - an Asian Journal, 2021, 16, 1519-1538.	3.3	55
43	High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sensors and Actuators B: Chemical, 2007, 124, 192-201.	7.8	53
44	Sintering and Dielectric Properties of Hydrothermally Synthesized Cubic and TetragonalBaTiO3Powders. Japanese Journal of Applied Physics, 1997, 36, 214-221.	1.5	45
45	Selective gas detection with catalytic filter. Materials Chemistry and Physics, 2002, 75, 56-60.	4.0	45
46	Characterization of TiO2-Based Sensor Materials Using Immittafice Spectroscopy. Journal of the American Ceramic Society, 1994, 77, 481-486.	3.8	44
47	Ceramic-based chemical sensors, probes and field-tests in automobile engines. Journal of Materials Science, 2003, 38, 4239-4245.	3.7	44
48	CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environmental Research, 2021, 200, 111377.	7.5	42
49	Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review. Journal of Materials Science, 2013, 48, 8337-8353.	3.7	41
50	Nanocarving of titania (TiO2): a novel approach for fabricating chemical sensing platform. Ceramics International, 2004, 30, 1121-1126.	4.8	37
51	Effects of NiO addition in WO3-based gas sensors prepared by thick film process. Solid State Ionics, 2002, 152-153, 827-832.	2.7	36
52	A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles. Sensors, 2014, 14, 13613-13627.	3.8	36
53	Detection of Formaldehyde in Mixed VOCs Gases Using Sensor Array With Neural Networks. IEEE Sensors Journal, 2016, 16, 6081-6086.	4.7	35
54	Selectivity mechanisms in resistive-type metal oxide heterostructural gas sensors. Sensors and Actuators B: Chemical, 2022, 355, 131242.	7.8	35

#	Article	IF	CITATIONS
55	The ac electrical behavior of polycrystalline yttria. Journal of Applied Physics, 1995, 78, 1757-1762.	2.5	34
56	Temperature-controlled CO, CO2 and NOx sensing in a diesel engine exhaust stream. Sensors and Actuators B: Chemical, 2005, 107, 839-848.	7.8	32
57	Thermally grown TiO2 nanowires to improve cell growth and proliferation on titanium based materials. Ceramics International, 2013, 39, 5949-5954.	4.8	32
58	Tailoring ZnO nanostructures by spray pyrolysis and thermal annealing. Ceramics International, 2015, 41, 5205-5211.	4.8	32
59	Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites. Ceramics International, 2021, 47, 25696-25707.	4.8	31
60	High-Temperature Immittance Response in Anatase-Based Sensor Materials. Journal of the American Ceramic Society, 1994, 77, 3145-3152.	3.8	30
61	Title is missing!. , 1998, 2, 21-31.		30
62	A Rugged Oxygen Gas Sensor with Solid Reference for High Temperature Applications. Journal of the Electrochemical Society, 2001, 148, G91.	2.9	30
63	Dependence of potentiometric oxygen sensing characteristics on the nature of electrodes. Sensors and Actuators B: Chemical, 2006, 113, 162-168.	7.8	30
64	Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces. Scientific Reports, 2016, 6, 21828.	3.3	30
65	High temperature potentiometric carbon dioxide sensor with minimal interference to humidity. Sensors and Actuators B: Chemical, 2009, 142, 337-341.	7.8	28
66	Structural and thermal analyses on phase evolution of sol–gel (Ba,Sr)TiO3 thin films. Surface and Coatings Technology, 2003, 167, 203-206.	4.8	27
67	Time Evolution of Demixing in Oxides under an Oxygen Potential Gradient. Journal of the American Ceramic Society, 1988, 71, 513-521.	3.8	26
68	Selective detection of ethanol vapor using xTiO2–(1 â~' x)WO3 based sensor. Sensors and Actuators B: Chemical, 2003, 94, 99-102.	7.8	25
69	The origin of oxygen dependence in a potentiometric CO2 sensor with Li-ion conducting electrolytes. Sensors and Actuators B: Chemical, 2003, 88, 53-59.	7.8	24
70	Mixed Ionic and Electronic Conduction in Li[sub 3]PO[sub 4] Electrolyte for a CO[sub 2] Gas Sensor. Journal of the Electrochemical Society, 2006, 153, H4.	2.9	24
71	Demixing of (Ni, Co)O Under an Oxygen Potential Gradient Using a YSZâ€Based Galvanic Cell. Journal of the Electrochemical Society, 1991, 138, 3673-3677.	2.9	23
72	Selfâ€Assembly of Pseudoperiodic Arrays of Nanoislands on YSZâ€(001). Advanced Materials, 2008, 20, 1699-1705.	21.0	23

#	Article	IF	CITATIONS
73	Osteogenic potential of in situ TiO 2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate. Applied Surface Science, 2014, 320, 161-170.	6.1	23
74	Niobium pentoxide as a lean-range oxygen sensor. Sensors and Actuators B: Chemical, 1999, 56, 121-128.	7.8	22
75	STEM-Cathodoluminescence of SnO2 nanowires and powders. Sensors and Actuators B: Chemical, 2017, 240, 193-203.	7.8	22
76	Growth of 1-D TiO ₂ Nanowires on Ti and Ti Alloys by Oxidation. Journal of Nanomaterials, 2010, 2010, 1-7.	2.7	21
77	A phosphate-based proton conducting solid electrolyte hydrocarbon gas sensor. Sensors and Actuators B: Chemical, 2002, 87, 480-486.	7.8	20
78	Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode. Ionics, 2014, 20, 563-569.	2.4	20
79	Growth and characterization of the oxide scales and core/shell nanowires on Ti-6Al-4V particles during thermal oxidation. Ceramics International, 2015, 41, 4401-4409.	4.8	20
80	A new method for fabrication of stable and reproducible yttria-based thermistors. Sensors and Actuators A: Physical, 2000, 87, 60-66.	4.1	19
81	High temperature sensor array for simultaneous determination of O2, CO, and CO2 with kernel ridge regression data analysis. Sensors and Actuators B: Chemical, 2007, 123, 950-963.	7.8	19
82	Stress enhanced TiO 2 nanowire growth on Ti–6Al–4V particles by thermal oxidation. Ceramics International, 2013, 39, 6517-6526.	4.8	18
83	Interface reaction and its effect on the performance of a CO2 gas sensor based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode. Sensors and Actuators B: Chemical, 2013, 182, 95-103.	7.8	18
84	Osteoblast and stem cell response to nanoscale topographies: a review. Science and Technology of Advanced Materials, 2016, 17, 698-714.	6.1	17
85	Demixing of Oxides under a Temperature Gradient. Journal of the American Ceramic Society, 1987, 70, 246-253.	3.8	16
86	Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment. Materials Science and Engineering C, 2012, 32, 2469-2475.	7.3	16
87	Infrared reflectance spectra of doped BaTi4O9. Journal of Solid State Chemistry, 1991, 95, 275-282.	2.9	15
88	Detection of CO in a reducing, hydrous environment using CuBr as electrolyte. Sensors and Actuators B: Chemical, 2003, 92, 351-355.	7.8	15
89	Kinetic mechanism of TiO2 nanocarving via reaction with hydrogen gas. Journal of Materials Research, 2006, 21, 1822-1829.	2.6	15
90	Self Assembly of Nanoislands on YSZ-(001) Surface: A Mechanistic Approach Toward a Robust Process. Nano Letters, 2013, 13, 2116-2121.	9.1	15

#	Article	IF	CITATIONS
91	Co-synthesis of ZnO/SnO2 mixed nanowires via a single-step carbothermal reduction method. Ceramics International, 2014, 40, 5039-5042.	4.8	14
92	Synthesis and electrical properties of dense Bi2Al4O9. Journal of Solid State Electrochemistry, 2006, 10, 488-498.	2.5	13
93	ONE-DIMENSIONAL OXIDE NANOSTRUCTURES PRODUCED BY GAS PHASE REACTION. Functional Materials Letters, 2009, 02, 87-94.	1.2	13
94	Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO2 nanofibrous surfaces. International Journal of Nanomedicine, 2014, 9, 5389.	6.7	13
95	Catalyst free single-step fabrication of SnO2/ZnO core–shell nanostructures. Ceramics International, 2014, 40, 7601-7605.	4.8	12
96	Synthesis of Hierarchical SnO2 Nanowire–TiO2 Nanorod Brushes Anchored to Commercially Available FTO-coated Glass Substrates. Nano-Micro Letters, 2017, 9, 33.	27.0	12
97	Supramolecularly assembled isonicotinamide/reduced graphene oxide nanocomposite for room-temperature NO2 gas sensor. Environmental Technology and Innovation, 2022, 25, 102066.	6.1	12
98	The AC Electrical Behavior of Hydrothermally Synthesized Barium Titanate Ceramics. Japanese Journal of Applied Physics, 1996, 35, 6145-6152.	1.5	11
99	In vitro chondrocyte interactions with TiO2 nanofibers grown on Ti–6Al–4V substrate by oxidation. Ceramics International, 2014, 40, 8301-8304.	4.8	11
100	An Additive Micromolding Approach for the Development of Micromachined Ceramic Substrates for RF Applications. Journal of Microelectromechanical Systems, 2004, 13, 514-525.	2.5	10
101	Growth of coaxial nanowires by thermal oxidation of Ti64 alloy. Materials Technology, 2013, 28, 280-285.	3.0	9
102	A new open-access online database for resistive-type gas sensor properties and performance. Sensors and Actuators B: Chemical, 2020, 321, 128591.	7.8	9
103	Determination of atomistic parameters and transport properties combining theory and experiments of demixing in (Co,Mg)O. Journal Physics D: Applied Physics, 1995, 28, 120-128.	2.8	8
104	Electrode attachment, aging and thermal-cycling characteristics of yttria-based thermistors. Materials Letters, 1999, 40, 213-221.	2.6	8
105	An In-house-Built Thermally Stimulated Current Measurement Setup: Strontium Titanate as a Test System. Japanese Journal of Applied Physics, 2000, 39, 4830-4834.	1.5	8
106	Reactive conversion of polycrystalline SnO ₂ into single-crystal nanofiber arrays at low oxygen partial pressure. Journal of Materials Research, 2008, 23, 2639-2644.	2.6	8
107	Human fetal osteoblast cell response to self-assembled nanostructures on YSZ-(110) single crystal substrates. Materials and Design, 2016, 94, 274-279.	7.0	8
108	Modulation of osteoblast behavior on nanopatterned yttria-stabilized zirconia surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 26-31.	3.1	8

#	Article	IF	CITATIONS
109	Epitaxial pore-free gadolinia-doped ceria thin films on yttria-stabilized zirconia by RF magnetron sputtering. Ceramics International, 2013, 39, 9749-9752.	4.8	7
110	The path probability method: An atomistic technique of diffusion. Journal of Materials Science, 1992, 27, 3125-3132.	3.7	6
111	A generalized view of the correlation factor in solidâ€state diffusion. Journal of Applied Physics, 1994, 75, 2851-2856.	2.5	6
112	Novel Structural Modulation in Ceramic Sensors Via Redox Processing in Gas Buffers. International Journal of Applied Ceramic Technology, 2006, 3, 177-192.	2.1	6
113	Demixing of (Ni,Co)O under an Oxygen Potential Gradient(II). Journal of the Electrochemical Society, 1992, 139, L77-L78.	2.9	5
114	Development of Agile Titania Sensors Via High-Temperature Reductive Etching Process (HiTREP©): I. Structural Reorganization. International Journal of Applied Ceramic Technology, 2008, 5, 480-489.	2.1	5
115	Measuring optical properties of individual SnO2 nanowires via valence electron energy-loss spectroscopy. Journal of Materials Research, 2017, 32, 2479-2486.	2.6	5
116	Ceramic Sensors for Carbon Monoxide and Hydrogen. Electrochemical Society Interface, 1994, 3, 31-34.	0.4	5
117	Performance of a Ceramic CO Sensor in the Automotive Exhaust System. , 0, , .		4
118	Guest editorial: Chemical sensors for pollution monitoring and control. Journal of Materials Science, 2003, 38, 4237-4237.	3.7	4
119	Demixing: A source of material deterioration. Journal of Physics and Chemistry of Solids, 1989, 50, 729-733.	4.0	3
120	Ceramic materials and nanostructures for chemical sensing. , 2005, , .		3
121	Gas-phase driven nano-machined TiO2 ceramics. Journal of Electroceramics, 2008, 21, 103-109.	2.0	3
122	Comparison of electrical measurements of nanostructured gas sensors using wire bonding vs. probe station. Measurement: Journal of the International Measurement Confederation, 2020, 153, 107451.	5.0	3
123	Sensing Behavior of TiO ₂ Thin Film Prepared by r.f. Reactive Sputtering. Sensor Letters, 2008, 6, 1049-1053.	0.4	3
124	A Research Driven Multidisciplinary Curriculum In Sensor Materials. , 2000, , 5.52.1.		2
125	Nano-Structured Ceramics by Gas-Phase Reaction. ECS Transactions, 2006, 3, 107-113.	0.5	2
126	Spontaneous Rippling and Subsequent Polymer Molding on Yttria-Stabilized Zirconia (110) Surfaces. ACS Nano, 2017, 11, 2257-2265.	14.6	2

SHEIKH ALI AKBAR

#	Article	IF	CITATIONS
127	CO Sensor Based on Au–TiO ₂ Nanowires Prepared by Conventional Heat-Treatment. Sensor Letters, 2013, 11, 2287-2290.	0.4	2
128	Ceramic Sensors for the Glass Industry. Ceramic Engineering and Science Proceedings, 0, , 91-100.	0.1	2
129	Mixed conduction in \hat{l}^2 -alumina type materials: a critical review. Journal of Materials Processing Technology, 1993, 38, 15-27.	6.3	1
130	Evaluation of bond integrity of TiO2-Y2O3 sensor using thermal wave imaging technique. Materials Letters, 1998, 34, 76-80.	2.6	1
131	Hillock Formation of SnO2Thin Films Prepared by Metal-Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 7071-7072.	1.5	1
132	Comment on "Potentiometric solid state CO2 sensor and the role of electronic conductivity of the electrolyte―by H. NÃfe. Sensors and Actuators B: Chemical, 2005, 105, 124-126.	7.8	1
133	Nano-structured Oxides: A Materials Approach. , 2011, , .		1
134	High-Temperature Ceramic Electrochemical Sensors. , 2014, , 973-981.		1
135	Synthesis of bioactive titania nanofibrous structures via oxidation. Materials Research Innovations, 2014, 18, S6-220-S6-223.	2.3	1
136	Correlative STEM-Cathodoluminescence and Low-Loss EELS of Semiconducting Oxide Nano-Heterostructures for Resistive Gas-Sensing Applications. Microscopy and Microanalysis, 2015, 21, 1255-1256.	0.4	1
137	Editorial: Nano-Hetero-Structures for Chemical Sensing: Opportunities and Challenges. Frontiers in Materials, 2019, 6, .	2.4	1
138	New Materials for Extreme Environment Solid-State Electrochemical Sensors. ECS Meeting Abstracts, 2021, MA2021-01, 1512-1512.	0.0	1
139	Heterostructural Nano-Scale Conductometric Sensing Devices to Improve Selective Gas Detection. ECS Meeting Abstracts, 2020, MA2020-01, 2036-2036.	0.0	1
140	Effect of Heterojunction Interface (SnO2ZnO) on Gas Sensing Properties of Core-Shell Nanostructures. ECS Meeting Abstracts, 2020, MA2020-01, 2052-2052.	0.0	1
141	Self Assembly of Nanoislands in Oxide Ceramics. Science of Advanced Materials, 2011, 3, 821-844.	0.7	1
142	Synthesis of Nano-Structured Metal-Oxides and Deposition via Ink-Jet Printing on Microhotplate Substrates. Science of Advanced Materials, 2011, 3, 845-852.	0.7	1
143	High-Temperature Electrical Behaviors of Li2ZrO3 Thick Films. Japanese Journal of Applied Physics, 2000, 39, L474-L475.	1.5	Ο
	<title>Nondestructive evaluation of bonding characteristics of</td><td></td><td></td></tr></tbody></table></title>		

144 TiO<formula><inf><roman>2</roman>2</roman>2</roman></inf></formula>Al<formula><inf><roman>2</roman></inf></formula>O<formula></onf><roman>2</roman>2</roman></inf></formula>O<formula>

#	Article	IF	CITATIONS
145	Guest editorial: Chemical and bio-ceramics. Journal of Materials Science, 2003, 38, 4609-4610.	3.7	Ο
146	Nano-structured Oxides: Platforms for Chemical Sensing and Beyond. , 2011, , .		0
147	(Sensor Division Outstanding Achievement Award Presentation) Ceramic Gas Sensors to Oxide Nanostructures: Opportunities and Challenges. ECS Transactions, 2013, 50, 119-128.	0.5	0
148	Surface Properties and Cell Response of Bioactive Thermally Grown TiO ₂ Nanofibers. Applied Mechanics and Materials, 0, 575, 219-222.	0.2	0
149	Evaluation of Surface Properties and <i>In Vitro</i> Characterization of Surface Modified <i>In Situ</i> TiO ₂ Nanofibers. Key Engineering Materials, 0, 656-657, 63-67.	0.4	0
150	Step faceting and the self-assembly of nanoislands on miscut YSZ(001) surfaces. Applied Surface Science, 2017, 407, 192-196.	6.1	0
151	Surface Patterning of Functional Ceramics: A Materials Design. Frontiers in Materials, 2017, 3, .	2.4	Ο
152	Nano-Heterostructure Metal Oxide Gas Sensors: Opportunities and Challenges. , 2020, , .		0
153	A Special Section on Nanostructured Ceramic Oxides: Challenges and Opportunities. Science of Advanced Materials, 2011, 3, 735-738.	0.7	Ο
154	<i>A Special Issue on</i> Energy and Environment: Role of Advanced Materials. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 77-79.	0.3	0
155	Rate-Limiting Steps Elucidated By Electrochemical Impedance Spectroscopy of a Yttria-Stabilized Zirconia 2-in-1 Temperature and Oxygen Gas Sensor Measured at Extreme Temperatures. ECS Meeting Abstracts, 2020, MA2020-01, 2159-2159.	0.0	0
156	Nano-Heterostructure Metal Oxide Gas Sensors: Opportunities and Challenges. , 2022, , 297-301.		0