Sheikh Ali Akbar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888658/publications.pdf

Version: 2024-02-01

57758 36028 9,859 156 44 97 citations h-index g-index papers 159 159 159 9591 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Supramolecularly assembled isonicotinamide/reduced graphene oxide nanocomposite for room-temperature NO2 gas sensor. Environmental Technology and Innovation, 2022, 25, 102066.	6.1	12
2	Nano-Heterostructure Metal Oxide Gas Sensors: Opportunities and Challenges. , 2022, , 297-301.		O
3	Selectivity mechanisms in resistive-type metal oxide heterostructural gas sensors. Sensors and Actuators B: Chemical, 2022, 355, 131242.	7.8	35
4	Zinc Oxideâ€Based Acetone Gas Sensors for Breath Analysis: A Review. Chemistry - an Asian Journal, 2021, 16, 1519-1538.	3.3	55
5	New Materials for Extreme Environment Solid-State Electrochemical Sensors. ECS Meeting Abstracts, 2021, MA2021-01, 1512-1512.	0.0	1
6	CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environmental Research, 2021, 200, 111377.	7.5	42
7	Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites. Ceramics International, 2021, 47, 25696-25707.	4.8	31
8	Nano-Heterostructure Metal Oxide Gas Sensors: Opportunities and Challenges. , 2020, , .		0
9	Comparison of electrical measurements of nanostructured gas sensors using wire bonding vs. probe station. Measurement: Journal of the International Measurement Confederation, 2020, 153, 107451.	5.0	3
10	Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sensors and Actuators B: Chemical, 2020, 305, 127455.	7.8	109
11	A new open-access online database for resistive-type gas sensor properties and performance. Sensors and Actuators B: Chemical, 2020, 321, 128591.	7.8	9
12	Editors' Choiceâ€"Critical Reviewâ€"A Critical Review of Solid State Gas Sensors. Journal of the Electrochemical Society, 2020, 167, 037570.	2.9	112
13	Heterostructural Nano-Scale Conductometric Sensing Devices to Improve Selective Gas Detection. ECS Meeting Abstracts, 2020, MA2020-01, 2036-2036.	0.0	1
14	Effect of Heterojunction Interface (SnO2ZnO) on Gas Sensing Properties of Core-Shell Nanostructures. ECS Meeting Abstracts, 2020, MA2020-01, 2052-2052.	0.0	1
15	Rate-Limiting Steps Elucidated By Electrochemical Impedance Spectroscopy of a Yttria-Stabilized Zirconia 2-in-1 Temperature and Oxygen Gas Sensor Measured at Extreme Temperatures. ECS Meeting Abstracts, 2020, MA2020-01, 2159-2159.	0.0	O
16	Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sensors and Actuators B: Chemical, 2019, 301, 126845.	7.8	416
17	Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: A review. Sensors and Actuators B: Chemical, 2019, 295, 127-143.	7.8	150
18	Editorial: Nano-Hetero-Structures for Chemical Sensing: Opportunities and Challenges. Frontiers in Materials, 2019, 6, .	2.4	1

#	Article	IF	Citations
19	Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sensors and Actuators B: Chemical, 2019, 286, 624-640.	7.8	410
20	Modulation of osteoblast behavior on nanopatterned yttria-stabilized zirconia surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 26-31.	3.1	8
21	Spontaneous Rippling and Subsequent Polymer Molding on Yttria-Stabilized Zirconia (110) Surfaces. ACS Nano, 2017, 11, 2257-2265.	14.6	2
22	Synthesis of Hierarchical SnO2 Nanowire–TiO2 Nanorod Brushes Anchored to Commercially Available FTO-coated Glass Substrates. Nano-Micro Letters, 2017, 9, 33.	27.0	12
23	Measuring optical properties of individual SnO2 nanowires via valence electron energy-loss spectroscopy. Journal of Materials Research, 2017, 32, 2479-2486.	2.6	5
24	Step faceting and the self-assembly of nanoislands on miscut YSZ(001) surfaces. Applied Surface Science, 2017, 407, 192-196.	6.1	0
25	Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study. Sensors and Actuators B: Chemical, 2017, 241, 99-108.	7.8	63
26	STEM-Cathodoluminescence of SnO2 nanowires and powders. Sensors and Actuators B: Chemical, 2017, 240, 193-203.	7.8	22
27	In-situ fabricated gas sensors based on one dimensional core-shell TiO2-Al2O3 nanostructures. Sensors and Actuators B: Chemical, 2017, 238, 972-984.	7.8	64
28	Surface Patterning of Functional Ceramics: A Materials Design. Frontiers in Materials, 2017, 3, .	2.4	0
29	Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces. Scientific Reports, 2016, 6, 21828.	3.3	30
30	Review of zirconia-based bioceramic: Surface modification and cellular response. Ceramics International, 2016, 42, 12543-12555.	4.8	129
31	Osteoblast and stem cell response to nanoscale topographies: a review. Science and Technology of Advanced Materials, 2016, 17, 698-714.	6.1	17
32	Detection of Formaldehyde in Mixed VOCs Gases Using Sensor Array With Neural Networks. IEEE Sensors Journal, 2016, 16, 6081-6086.	4.7	35
33	Human fetal osteoblast cell response to self-assembled nanostructures on YSZ-(110) single crystal substrates. Materials and Design, 2016, 94, 274-279.	7.0	8
34	Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensors and Actuators B: Chemical, 2016, 230, 330-336.	7.8	161
35	Correlative STEM-Cathodoluminescence and Low-Loss EELS of Semiconducting Oxide Nano-Heterostructures for Resistive Gas-Sensing Applications. Microscopy and Microanalysis, 2015, 21, 1255-1256.	0.4	1
36	Growth and characterization of the oxide scales and core/shell nanowires on Ti-6Al-4V particles during thermal oxidation. Ceramics International, 2015, 41, 4401-4409.	4.8	20

#	Article	IF	CITATIONS
37	Tailoring ZnO nanostructures by spray pyrolysis and thermal annealing. Ceramics International, 2015, 41, 5205-5211.	4.8	32
38	Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process. Journal of Alloys and Compounds, 2015, 618, 455-462.	5 . 5	75
39	Proliferation and stemness preservation of human adipose-derived stem cells by surface-modified in situ TiO2 nanofibrous surfaces. International Journal of Nanomedicine, 2014, 9, 5389.	6.7	13
40	Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures. Sensors, 2014, 14, 14586-14600.	3.8	73
41	A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles. Sensors, 2014, 14, 13613-13627.	3.8	36
42	High-Temperature Ceramic Electrochemical Sensors. , 2014, , 973-981.		1
43	Catalyst free single-step fabrication of SnO2/ZnO core–shell nanostructures. Ceramics International, 2014, 40, 7601-7605.	4.8	12
44	Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode. lonics, 2014, 20, 563-569.	2.4	20
45	In vitro chondrocyte interactions with TiO2 nanofibers grown on Ti–6Al–4V substrate by oxidation. Ceramics International, 2014, 40, 8301-8304.	4.8	11
46	Osteogenic potential of in situ TiO 2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate. Applied Surface Science, 2014, 320, 161-170.	6.1	23
47	Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 2014, 204, 250-272.	7.8	1,465
48	Co-synthesis of ZnO/SnO2 mixed nanowires via a single-step carbothermal reduction method. Ceramics International, 2014, 40, 5039-5042.	4.8	14
49	Synthesis of bioactive titania nanofibrous structures via oxidation. Materials Research Innovations, 2014, 18, S6-220-S6-223.	2.3	1
50	<i>A Special Issue on</i> Energy and Environment: Role of Advanced Materials. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 77-79.	0.3	0
51	Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensors and Actuators B: Chemical, 2013, 188, 902-908.	7.8	186
52	Epitaxial pore-free gadolinia-doped ceria thin films on yttria-stabilized zirconia by RF magnetron sputtering. Ceramics International, 2013, 39, 9749-9752.	4.8	7
53	Thermally grown TiO2 nanowires to improve cell growth and proliferation on titanium based materials. Ceramics International, 2013, 39, 5949-5954.	4.8	32
54	Stress enhanced TiO 2 nanowire growth on Ti–6Al–4V particles by thermal oxidation. Ceramics International, 2013, 39, 6517-6526.	4.8	18

#	Article	IF	CITATIONS
55	Self Assembly of Nanoislands on YSZ-(001) Surface: A Mechanistic Approach Toward a Robust Process. Nano Letters, 2013, 13, 2116-2121.	9.1	15
56	Interface reaction and its effect on the performance of a CO2 gas sensor based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode. Sensors and Actuators B: Chemical, 2013, 182, 95-103.	7.8	18
57	Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review. Journal of Materials Science, 2013, 48, 8337-8353.	3.7	41
58	(Sensor Division Outstanding Achievement Award Presentation) Ceramic Gas Sensors to Oxide Nanostructures: Opportunities and Challenges. ECS Transactions, 2013, 50, 119-128.	0.5	0
59	Growth of coaxial nanowires by thermal oxidation of Ti64 alloy. Materials Technology, 2013, 28, 280-285.	3.0	9
60	CO Sensor Based on Au–TiO ₂ Nanowires Prepared by Conventional Heat-Treatment. Sensor Letters, 2013, 11, 2287-2290.	0.4	2
61	Hierarchical structured TiO2 nano-tubes for formaldehyde sensing. Ceramics International, 2012, 38, 6341-6347.	4.8	57
62	Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment. Materials Science and Engineering C, 2012, 32, 2469-2475.	7.3	16
63	Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors, 2012, 12, 7207-7258.	3.8	488
64	Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 2012, 38, 4421-4435.	4.8	215
65	Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sensors and Actuators B: Chemical, 2012, 165, 13-18.	7.8	69
66	Nano-structured Oxides: A Materials Approach. , 2011, , .		1
67	A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sensors and Actuators B: Chemical, 2011, 156, 505-509.	7.8	202
68	Nano-structured Oxides: Platforms for Chemical Sensing and Beyond., 2011,,.		0
69	Self Assembly of Nanoislands in Oxide Ceramics. Science of Advanced Materials, 2011, 3, 821-844.	0.7	1
70	Synthesis of Nano-Structured Metal-Oxides and Deposition via Ink-Jet Printing on Microhotplate Substrates. Science of Advanced Materials, 2011, 3, 845-852.	0.7	1
71	A Special Section on Nanostructured Ceramic Oxides: Challenges and Opportunities. Science of Advanced Materials, 2011, 3, 735-738.	0.7	0
72	Growth of 1-D TiO ₂ Nanowires on Ti and Ti Alloys by Oxidation. Journal of Nanomaterials, 2010, 2010, 1-7.	2.7	21

#	Article	IF	CITATIONS
73	ONE-DIMENSIONAL OXIDE NANOSTRUCTURES PRODUCED BY GAS PHASE REACTION. Functional Materials Letters, 2009, 02, 87-94.	1.2	13
74	High temperature potentiometric carbon dioxide sensor with minimal interference to humidity. Sensors and Actuators B: Chemical, 2009, 142, 337-341.	7.8	28
75	Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres. Sensors and Actuators B: Chemical, 2009, 136, 138-143.	7.8	136
76	Gas-phase driven nano-machined TiO2 ceramics. Journal of Electroceramics, 2008, 21, 103-109.	2.0	3
77	Selfâ€Assembly of Pseudoperiodic Arrays of Nanoislands on YSZâ€(001). Advanced Materials, 2008, 20, 1699-1705.	21.0	23
78	Development of Agile Titania Sensors Via High-Temperature Reductive Etching Process (HiTREP©): I. Structural Reorganization. International Journal of Applied Ceramic Technology, 2008, 5, 480-489.	2.1	5
79	Reactive conversion of polycrystalline SnO ₂ into single-crystal nanofiber arrays at low oxygen partial pressure. Journal of Materials Research, 2008, 23, 2639-2644.	2.6	8
80	Sensing Behavior of TiO ₂ Thin Film Prepared by r.f. Reactive Sputtering. Sensor Letters, 2008, 6, 1049-1053.	0.4	3
81	High temperature sensor array for simultaneous determination of O2, CO, and CO2 with kernel ridge regression data analysis. Sensors and Actuators B: Chemical, 2007, 123, 950-963.	7.8	19
82	Aluminum-doped TiO2 nano-powders for gas sensors. Sensors and Actuators B: Chemical, 2007, 124, 111-117.	7.8	122
83	High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sensors and Actuators B: Chemical, 2007, 124, 192-201.	7.8	53
84	Kinetic mechanism of TiO2 nanocarving via reaction with hydrogen gas. Journal of Materials Research, 2006, 21, 1822-1829.	2.6	15
85	Mixed Ionic and Electronic Conduction in Li[sub 3]PO[sub 4] Electrolyte for a CO[sub 2] Gas Sensor. Journal of the Electrochemical Society, 2006, 153, H4.	2.9	24
86	Novel Structural Modulation in Ceramic Sensors Via Redox Processing in Gas Buffers. International Journal of Applied Ceramic Technology, 2006, 3, 177-192.	2.1	6
87	High-Temperature Ceramic Gas Sensors: A Review. International Journal of Applied Ceramic Technology, 2006, 3, 302-311.	2.1	164
88	Dependence of potentiometric oxygen sensing characteristics on the nature of electrodes. Sensors and Actuators B: Chemical, 2006, 113, 162-168.	7.8	30
89	Synthesis and electrical properties of dense Bi2Al4O9. Journal of Solid State Electrochemistry, 2006, 10, 488-498.	2.5	13
90	Nano-Structured Ceramics by Gas-Phase Reaction. ECS Transactions, 2006, 3, 107-113.	0.5	2

#	Article	IF	Citations
91	Ceramic materials and nanostructures for chemical sensing. , 2005, , .		3
92	TiO2–SnO2 nanostructures and their H2 sensing behavior. Sensors and Actuators B: Chemical, 2005, 108, 29-33.	7.8	105
93	Temperature-controlled CO, CO2 and NOx sensing in a diesel engine exhaust stream. Sensors and Actuators B: Chemical, 2005, 107, 839-848.	7.8	32
94	Comment on "Potentiometric solid state CO2 sensor and the role of electronic conductivity of the electrolyteâ€-by H. NÃ♠. Sensors and Actuators B: Chemical, 2005, 105, 124-126.	7.8	1
95	Nanocarving of titania (TiO2): a novel approach for fabricating chemical sensing platform. Ceramics International, 2004, 30, 1121-1126.	4.8	37
96	An Additive Micromolding Approach for the Development of Micromachined Ceramic Substrates for RF Applications. Journal of Microelectromechanical Systems, 2004, 13, 514-525.	2.5	10
97	Ceramic-based chemical sensors, probes and field-tests in automobile engines. Journal of Materials Science, 2003, 38, 4239-4245.	3.7	44
98	Oxygen sensors: Materials, methods, designs and applications. Journal of Materials Science, 2003, 38, 4271-4282.	3.7	424
99	Ceramics for chemical sensing. Journal of Materials Science, 2003, 38, 4611-4637.	3.7	207
100	Ceramic electrolytes and electrochemical sensors. Journal of Materials Science, 2003, 38, 4639-4660.	3.7	92
101	Guest editorial: Chemical and bio-ceramics. Journal of Materials Science, 2003, 38, 4609-4610.	3.7	0
102	Guest editorial: Chemical sensors for pollution monitoring and control. Journal of Materials Science, 2003, 38, 4237-4237.	3.7	4
103	ZnO sol–gel derived porous film for CO gas sensing. Sensors and Actuators B: Chemical, 2003, 96, 717-722.	7.8	125
104	Structural and thermal analyses on phase evolution of sol–gel (Ba,Sr)TiO3 thin films. Surface and Coatings Technology, 2003, 167, 203-206.	4.8	27
105	The origin of oxygen dependence in a potentiometric CO2 sensor with Li-ion conducting electrolytes. Sensors and Actuators B: Chemical, 2003, 88, 53-59.	7.8	24
106	Detection of CO in a reducing, hydrous environment using CuBr as electrolyte. Sensors and Actuators B: Chemical, 2003, 92, 351-355.	7.8	15
107	Selective detection of ethanol vapor using xTiO2–(1 â^' x)WO3 based sensor. Sensors and Actuators B: Chemical, 2003, 94, 99-102.	7.8	25
108	Hillock Formation of SnO2Thin Films Prepared by Metal-Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 7071-7072.	1.5	1

#	Article	IF	CITATIONS
109	<title>Nondestructive evaluation of bonding characteristics of TiO<formula><inf><roman>2</roman></inf></formula>Ogas sensor</title> ., 2002, 4703, 31.	kformula >	 ✓onf><roma< li=""> </roma<>
110	Pyrolysis of Negative Photoresists to Fabricate Carbon Structures for Microelectromechanical Systems and Electrochemical Applications. Journal of the Electrochemical Society, 2002, 149, E78.	2.9	138
111	Selective gas detection with catalytic filter. Materials Chemistry and Physics, 2002, 75, 56-60.	4.0	45
112	Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments. Sensors and Actuators B: Chemical, 2002, 82, 142-149.	7.8	75
113	A phosphate-based proton conducting solid electrolyte hydrocarbon gas sensor. Sensors and Actuators B: Chemical, 2002, 87, 480-486.	7.8	20
114	Effects of NiO addition in WO3-based gas sensors prepared by thick film process. Solid State Ionics, 2002, 152-153, 827-832.	2.7	36
115	Composite n–p semiconducting titanium oxides as gas sensors. Sensors and Actuators B: Chemical, 2001, 79, 17-27.	7.8	206
116	Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sensors and Actuators B: Chemical, 2001, 80, 234-242.	7.8	60
117	Titanium dioxide based high temperature carbon monoxide selective sensor. Sensors and Actuators B: Chemical, 2001, 72, 239-248.	7.8	194
118	A Rugged Oxygen Gas Sensor with Solid Reference for High Temperature Applications. Journal of the Electrochemical Society, 2001, 148, G91.	2.9	30
119	A new method for fabrication of stable and reproducible yttria-based thermistors. Sensors and Actuators A: Physical, 2000, 87, 60-66.	4.1	19
120	A Research Driven Multidisciplinary Curriculum In Sensor Materials. , 2000, , 5.52.1.		2
121	An In-house-Built Thermally Stimulated Current Measurement Setup: Strontium Titanate as a Test System. Japanese Journal of Applied Physics, 2000, 39, 4830-4834.	1.5	8
122	High-Temperature Electrical Behaviors of Li2ZrO3 Thick Films. Japanese Journal of Applied Physics, 2000, 39, L474-L475.	1.5	0
123	Niobium pentoxide as a lean-range oxygen sensor. Sensors and Actuators B: Chemical, 1999, 56, 121-128.	7.8	22
124	Electrode attachment, aging and thermal-cycling characteristics of yttria-based thermistors. Materials Letters, 1999, 40, 213-221.	2.6	8
125	Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures:Â Optimization of a Carbon Monoxide Sensor. Journal of Physical Chemistry B, 1999, 103, 4412-4422.	2.6	136
126	Title is missing!. , 1998, 2, 21-31.		30

#	Article	IF	CITATIONS
127	Evaluation of bond integrity of TiO2-Y2O3 sensor using thermal wave imaging technique. Materials Letters, 1998, 34, 76-80.	2.6	1
128	Sensing Mechanism of a Carbon Monoxide Sensor Based on Anatase Titania. Journal of the Electrochemical Society, 1997, 144, 1750-1753.	2.9	69
129	Sintering and Dielectric Properties of Hydrothermally Synthesized Cubic and TetragonalBaTiO3Powders. Japanese Journal of Applied Physics, 1997, 36, 214-221.	1.5	45
130	Characterization of Submicron Particles of Tetragonal BaTiO3. Chemistry of Materials, 1996, 8, 226-234.	6.7	229
131	The AC Electrical Behavior of Hydrothermally Synthesized Barium Titanate Ceramics. Japanese Journal of Applied Physics, 1996, 35, 6145-6152.	1.5	11
132	Electrical properties of high-temperature oxides, borides, carbides, and nitrides. Journal of Materials Science, 1995, 30, 1627-1641.	3.7	110
133	Electrical Resistivity of Titanium Diboride and Zirconium Diboride. Journal of the American Ceramic Society, 1995, 78, 1380-1382.	3.8	89
134	Determination of atomistic parameters and transport properties combining theory and experiments of demixing in (Co,Mg)O. Journal Physics D: Applied Physics, 1995, 28, 120-128.	2.8	8
135	The ac electrical behavior of polycrystalline yttria. Journal of Applied Physics, 1995, 78, 1757-1762.	2.5	34
136	Bismuth oxide-based solid electrolytes for fuel cells. Journal of Materials Science, 1994, 29, 4135-4151.	3.7	234
137	High-Temperature Immittance Response in Anatase-Based Sensor Materials. Journal of the American Ceramic Society, 1994, 77, 3145-3152.	3.8	30
138	Characterization of TiO2-Based Sensor Materials Using Immittafice Spectroscopy. Journal of the American Ceramic Society, 1994, 77, 481-486.	3.8	44
139	A generalized view of the correlation factor in solidâ€state diffusion. Journal of Applied Physics, 1994, 75, 2851-2856.	2.5	6
140	Hydrothermal Synthesis and Dielectric Properties of Tetragonal BaTiO3. Chemistry of Materials, 1994, 6, 1542-1548.	6.7	197
141	Ceramic Sensors for Carbon Monoxide and Hydrogen. Electrochemical Society Interface, 1994, 3, 31-34.	0.4	5
142	Mixed conduction in \hat{l}^2 -alumina type materials: a critical review. Journal of Materials Processing Technology, 1993, 38, 15-27.	6.3	1
143	Demixing of (Ni,Co)O under an Oxygen Potential Gradient(II). Journal of the Electrochemical Society, 1992, 139, L77-L78.	2.9	5
144	Solidâ€State Gas Sensors: A Review. Journal of the Electrochemical Society, 1992, 139, 3690-3704.	2.9	366

#	Article	IF	CITATIONS
145	The path probability method: An atomistic technique of diffusion. Journal of Materials Science, 1992, 27, 3125-3132.	3.7	6
146	Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide. Journal of the American Ceramic Society, 1992, 75, 2964-2968.	3.8	199
147	Demixing of (Ni, Co)O Under an Oxygen Potential Gradient Using a YSZâ€Based Galvanic Cell. Journal of the Electrochemical Society, 1991, 138, 3673-3677.	2.9	23
148	Infrared reflectance spectra of doped BaTi4O9. Journal of Solid State Chemistry, 1991, 95, 275-282.	2.9	15
149	Microwave Dielectric Properties of Doped BaTi4O9. Journal of the American Ceramic Society, 1991, 74, 1894-1898.	3.8	59
150	Demixing: A source of material deterioration. Journal of Physics and Chemistry of Solids, 1989, 50, 729-733.	4.0	3
151	Time Evolution of Demixing in Oxides under an Oxygen Potential Gradient. Journal of the American Ceramic Society, 1988, 71, 513-521.	3.8	26
152	Demixing of Oxides under a Temperature Gradient. Journal of the American Ceramic Society, 1987, 70, 246-253.	3.8	16
153	Performance of a Ceramic CO Sensor in the Automotive Exhaust System. , 0, , .		4
154	Surface Properties and Cell Response of Bioactive Thermally Grown TiO ₂ Nanofibers. Applied Mechanics and Materials, 0, 575, 219-222.	0.2	0
155	Evaluation of Surface Properties and <i>In Vitro</i> Characterization of Surface Modified <i>In Situ</i> TiO ₂ Nanofibers. Key Engineering Materials, 0, 656-657, 63-67.	0.4	0
156	Ceramic Sensors for the Glass Industry. Ceramic Engineering and Science Proceedings, 0, , 91-100.	0.1	2