Francesco Di Virgilio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888104/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The P2X7 purinergic receptor in intervertebral disc degeneration. Journal of Cellular Physiology, 2022, 237, 1418-1428.	4.1	6
2	Extracellular ATP is increased by release of ATP-loaded microparticles triggered by nutrient deprivation. Theranostics, 2022, 12, 859-874.	10.0	13
3	Irradiation causes senescence, ATP release, and P2X7 receptor isoform switch in glioblastoma. Cell Death and Disease, 2022, 13, 80.	6.3	24
4	Lactate Rewires Lipid Metabolism and Sustains a Metabolic–Epigenetic Axis in Prostate Cancer. Cancer Research, 2022, 82, 1267-1282.	0.9	52
5	Signalling by extracellular nucleotides in health and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119237.	4.1	23
6	The Purinergic Landscape of Type 2 Diabetes Mellitus. Molecules, 2022, 27, 1838.	3.8	4
7	A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	5
8	Modulation of Cell Energy Metabolism by the P2X7 Receptor. Methods in Molecular Biology, 2022, , 53-63.	0.9	1
9	P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules, 2022, 12, 983.	4.0	6
10	Expression and function of the P2X7 receptor in human osteoblasts: The role of NFATc1 transcription factor. Journal of Cellular Physiology, 2021, 236, 641-652.	4.1	10
11	P2X7 is a cytotoxic receptor….maybe not: implications for cancer. Purinergic Signalling, 2021, 17, 55-61.	2.2	13
12	Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. British Journal of Pharmacology, 2021, 178, 489-514.	5.4	165
13	Geoffrey Burnstock – An accidental pharmacologist. Biochemical Pharmacology, 2021, 187, 114300.	4.4	0
14	<i>In Vivo</i> Detection of Extracellular Adenosine Triphosphate in a Mouse Model of Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 655-664.	3.4	16
15	The P2X7 Receptor Is Overexpressed in the Lesional Skin of Subjects Affected by Hidradenitis Suppurativa: A Preliminary Study. Dermatology, 2021, 237, 111-118.	2.1	12
16	Mitochondrial P2X7 Receptor Localization Modulates Energy Metabolism Enhancing Physical Performance. Function, 2021, 2, zqab005.	2.3	29
17	From purines to purinergic signalling: molecular functions and human diseases. Signal Transduction and Targeted Therapy, 2021, 6, 162.	17.1	171
18	P2X7: a receptor with a split personality that raises new hopes for anti-cancer therapy. Purinergic Signalling, 2021, 17, 175-178.	2.2	4

#	Article	IF	CITATIONS
19	P2X receptors in cancer growth and progression. Biochemical Pharmacology, 2021, 187, 114350.	4.4	20
20	Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants, 2021, 10, 848.	5.1	40
21	ATP and cancer immunosurveillance. EMBO Journal, 2021, 40, e108130.	7.8	105
22	The P2X7 Receptor: A Promising Pharmacological Target in Diabetic Retinopathy. International Journal of Molecular Sciences, 2021, 22, 7110.	4.1	17
23	Astrocytesâ€derived extracellular vesicles in motion at the neuron surface: Involvement of the prion protein. Journal of Extracellular Vesicles, 2021, 10, e12114.	12.2	19
24	Maria Teresa Miras Portugal (1948–2021): in memoriam. Purinergic Signalling, 2021, 17, 515-517.	2.2	1
25	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
26	A3 Adenosine and P2X7 Purinergic Receptors as New Targets for an Innovative Pharmacological Therapy of Malignant Pleural Mesothelioma. Frontiers in Oncology, 2021, 11, 679285.	2.8	13
27	Editorial overview: Immunometabolism. Current Opinion in Pharmacology, 2021, 60, 168-169.	3.5	0
28	The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties. Journal of Bone Oncology, 2021, 31, 100398.	2.4	14
29	P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death and Disease, 2021, 12, 1088.	6.3	31
30	P2X7 receptor is essential for cross-dressing of bone marrow-derived dendritic cells. IScience, 2021, 24, 103520.	4.1	3
31	Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression. Cell Death and Disease, 2020, 11, 876.	6.3	39
32	Extracellular ATP: A Feasible Target for Cancer Therapy. Cells, 2020, 9, 2496.	4.1	126
33	P2X7 Receptor Activity Limits Accumulation of T Cells within Tumors. Cancer Research, 2020, 80, 3906-3919.	0.9	36
34	Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells. Frontiers in Oncology, 2020, 10, 1225.	2.8	14
35	The P2X7 Receptor 489C>T Gain of Function Polymorphism Favors HHV-6A Infection and Associates With Female Idiopathic Infertility. Frontiers in Pharmacology, 2020, 11, 96.	3.5	16
36	Purinergic signaling, DAMPs, and inflammation. American Journal of Physiology - Cell Physiology, 2020, 318, C832-C835.	4.6	127

#	Article	IF	CITATIONS
37	Association of Hypomorphic P2X7 Receptor Genotype With Age. Frontiers in Molecular Neuroscience, 2020, 13, 8.	2.9	4
38	P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Frontiers in Pharmacology, 2020, 11, 793.	3.5	102
39	Ectonucleotidases in Acute and Chronic Inflammation. Frontiers in Pharmacology, 2020, 11, 619458.	3.5	32
40	Detection of Extracellular ATP in the Tumor Microenvironment, Using the pmeLUC Biosensor. Methods in Molecular Biology, 2020, 2041, 183-195.	0.9	27
41	A rationale for targeting the P2X7 receptor in Coronavirus disease 19. British Journal of Pharmacology, 2020, 177, 4990-4994.	5.4	60
42	P2X receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1
43	ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival. Oncogene, 2019, 38, 194-208.	5.9	136
44	Extreme thrombocytosis in systemic juvenile idiopathic arthritis. A case report. Italian Journal of Pediatrics, 2019, 45, 73.	2.6	4
45	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
46	TRPP2 dysfunction decreases ATP-evoked calcium, induces cell aggregation and stimulates proliferation in T lymphocytes. BMC Nephrology, 2019, 20, 355.	1.8	12
47	Structure, function and techniques of investigation of the P2X7 receptor (P2X7R) in mammalian cells. Methods in Enzymology, 2019, 629, 115-150.	1.0	35
48	The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene, 2019, 38, 3636-3650.	5.9	144
49	Editorial overview: Purinergic P2X receptors in innate immunity and inflammation. Current Opinion in Pharmacology, 2019, 47, 141-144.	3.5	4
50	The P2X7 Receptor Is Shed Into Circulation: Correlation With C-Reactive Protein Levels. Frontiers in Immunology, 2019, 10, 793.	4.8	26
51	P2X7 Receptor Expression in Patients With Serositis Related to Systemic Lupus Erythematosus. Frontiers in Pharmacology, 2019, 10, 435.	3.5	23
52	Amyloid β-dependent mitochondrial toxicity in mouse microglia requires P2X7 receptor expression and is prevented by nimodipine. Scientific Reports, 2019, 9, 6475.	3.3	45
53	Role of the P2X7 receptor in tumor-associated inflammation. Current Opinion in Pharmacology, 2019, 47, 59-64.	3.5	38
54	Pharmacological blockade of the P2X7 receptor reverses retinal damage in a rat model of type 1 diabetes. Acta Diabetologica, 2019, 56, 1031-1036.	2.5	30

#	Article	IF	CITATIONS
55	Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis. Cell Reports, 2019, 27, 1-10.e4.	6.4	85
56	AB0169â€SNP (1513A>C AND 489C>T) OF P2X7 RECEPTOR IN SYSTEMIC LUPUS ERYTHEMATOSUS WITH SEROSITIS. , 2019, , .		0
57	Extracellular nucleotides and nucleosides as signalling molecules. Immunology Letters, 2019, 205, 16-24.	2.5	154
58	Role of the P2X7 receptor in <i>in vitro</i> and <i>in vivo</i> glioma tumor growth. Oncotarget, 2019, 10, 4840-4856.	1.8	26
59	P2X receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
60	Modulation of innate and adaptive immunity by P2X ion channels. Current Opinion in Immunology, 2018, 52, 51-59.	5.5	63
61	The Elusive P2X7 Macropore. Trends in Cell Biology, 2018, 28, 392-404.	7.9	205
62	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
63	The P2X7 receptor: A main player in inflammation. Biochemical Pharmacology, 2018, 151, 234-244.	4.4	282
64	Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight, 2018, 3, .	5.0	82
65	Islet-Derived eATP Fuels Autoreactive CD8+ T Cells and Facilitates the Onset of Type 1 Diabetes. Diabetes, 2018, 67, 2038-2053.	0.6	17
66	Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation. Frontiers in Pharmacology, 2018, 9, 39.	3.5	70
67	Microglia P2X4 receptors as pharmacological targets for demyelinating diseases. EMBO Molecular Medicine, 2018, 10, .	6.9	18
68	Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nature Reviews Cancer, 2018, 18, 601-618.	28.4	491
69	Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI). Oncotarget, 2018, 9, 30635-30648.	1.8	45
70	SAT0006â€P2x7 receptor in systemic lupus erythematosus (SLE). exploring a novel pathogenetic pathway in lupus related serositis. , 2018, , .		0
71	Extracellular purines, purinergic receptors and tumor growth. Oncogene, 2017, 36, 293-303.	5.9	428
72	"Hemophagocytic Lymphohistiocytosis after EBV reactivation and ibrutinib treatment in relapsed/refractory Chronic Lymphocytic Leukemia― Leukemia Research Reports, 2017, 7, 11-13.	0.4	6

#	Article	IF	CITATIONS
73	Design, synthesis and evaluation in an LPS rodent model of neuroinflammation of a novel 18F-labelled PET tracer targeting P2X7. EJNMMI Research, 2017, 7, 31.	2.5	50
74	The P2X7 Receptor in Infection and Inflammation. Immunity, 2017, 47, 15-31.	14.3	853
75	Use of luciferase probes to measure ATP in living cells and animals. Nature Protocols, 2017, 12, 1542-1562.	12.0	149
76	Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Reports, 2017, 21, 3414-3426.	6.4	126
77	The P2X7 Receptor-Interleukin-1 Liaison. Frontiers in Pharmacology, 2017, 8, 123.	3.5	142
78	P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis. Frontiers in Immunology, 2017, 8, 1028.	4.8	27
79	ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells. Frontiers in Immunology, 2017, 8, 1918.	4.8	72
80	Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells. Oncotarget, 2017, 8, 5895-5908.	1.8	45
81	The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease. Oncotarget, 2017, 8, 35962-35972.	1.8	28
82	P2×7 targeting inhibits growth of human mesothelioma. Oncotarget, 2016, 7, 49664-49676.	1.8	42
83	Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance. Cancer Cell, 2016, 30, 147-160.	16.8	410
84	Assessing Extracellular ATP as Danger Signal In Vivo: The pmeLuc System. Methods in Molecular Biology, 2016, 1417, 115-129.	0.9	25
85	Editorial overview: Cancer. Current Opinion in Pharmacology, 2016, 29, v-vii.	3.5	0
86	Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus?. Biomedical Journal, 2016, 39, 326-338.	3.1	30
87	Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Scientific Reports, 2016, 6, 26280.	3.3	47
88	AB0595â€Descriptive Analysis of A Single Center Series of 23 Patients with Positive PM-SCL Antibody. Annals of the Rheumatic Diseases, 2016, 75, 1108.1-1108.	0.9	0
89	P2 receptors in cancer progression and metastatic spreading. Current Opinion in Pharmacology, 2016, 29, 17-25.	3.5	43
90	P2RX7: A receptor with a split personality in inflammation and cancer. Molecular and Cellular Oncology, 2016, 3, e1010937.	0.7	23

#	Article	IF	CITATIONS
91	Chemotherapy-Dependent ATP Release from Leukemia Dying Cells Induces Indoleamine 2,3-Dioxygenase 1 in Dendritic Cells. Blood, 2016, 128, 3711-3711.	1.4	0
92	A Commentary on ââ,¬Å"PTX3 is an Extrinsic Oncosuppressor Regulating Complement-Dependent Inflammation in Cancerââ,¬Â• Frontiers in Oncology, 2015, 5, 118.	2.8	2
93	Purinergic signaling in the immune system. Autonomic Neuroscience: Basic and Clinical, 2015, 191, 117-123.	2.8	189
94	Accelerated Tumor Progression in Mice Lacking the ATP Receptor P2X7. Cancer Research, 2015, 75, 635-644.	0.9	157
95	The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB Journal, 2015, 29, 2450-2461.	0.5	169
96	p53 at the endoplasmic reticulum regulates apoptosis in a Ca ²⁺ -dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1779-1784.	7.1	247
97	Hemophagocytic Lymphohistiocytosis in a Patient with Relapsed Chronic Lymphocytic Leukemia Treated with Ibrutinib. Blood, 2015, 126, 4616-4616.	1.4	3
98	P2X Receptors and Inflammation. Current Medicinal Chemistry, 2015, 22, 866-877.	2.4	70
99	P2X7 Receptor Activation By ATP As Target of Novel Therapies in Acute Myeloid Leukemia. Blood, 2015, 126, 3684-3684.	1.4	0
100	The Induction of Inhibitory Pathways in Dendritic Cells May Hamper the Efficient Activation of Anti-Leukemia T Cells within Chemotherapy-Induced Immunogenic Cell Death. Blood, 2015, 126, 1019-1019.	1.4	0
101	Trophic Activity of Human P2X7 Receptor Isoforms A and B in Osteosarcoma. PLoS ONE, 2014, 9, e107224.	2.5	78
102	ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death and Disease, 2014, 5, e1135-e1135.	6.3	102
103	Possible protective role of the 489C>T P2X7R polymorphism in Alzheimer's disease. Experimental Gerontology, 2014, 60, 117-119.	2.8	40
104	Purinergic signalling and cancer. Purinergic Signalling, 2013, 9, 491-540.	2.2	258
105	The Therapeutic Potential of Modifying Inflammasomes and NOD-Like Receptors. Pharmacological Reviews, 2013, 65, 872-905.	16.0	143
106	Why myotoxin-containing snake venoms possess powerful nucleotidases?. Biochemical and Biophysical Research Communications, 2013, 430, 1289-1293.	2.1	33
107	Detecting adenosine triphosphate in the pericellular space. Interface Focus, 2013, 3, 20120101.	3.0	115
108	Reply to: †The discovery of a new class of synaptic transmitters in smooth muscle fifty years ago and amelioration of coronary artery thrombosis'. Acta Physiologica, 2013, 208, 139-140.	3.8	1

#	Article	IF	CITATIONS
109	The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21095-21100.	7.1	125
110	Anti-Tumor Activity of a miR-199-dependent Oncolytic Adenovirus. PLoS ONE, 2013, 8, e73964.	2.5	53
111	Expression of P2X7 Receptor Increases <i>In Vivo</i> Tumor Growth. Cancer Research, 2012, 72, 2957-2969.	0.9	324
112	Transient P2X7 Receptor Activation Triggers Macrophage Death Independent of Toll-like Receptors 2 and 4, Caspase-1, and Pannexin-1 Proteins. Journal of Biological Chemistry, 2012, 287, 10650-10663.	3.4	62
113	Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood, 2012, 119, 217-226.	1.4	52
114	Extracellular ATP Exerts Opposite Effects on Activated and Regulatory CD4+ T Cells via Purinergic P2 Receptor Activation. Journal of Immunology, 2012, 189, 1303-1310.	0.8	121
115	Purines, Purinergic Receptors, and Cancer. Cancer Research, 2012, 72, 5441-5447.	0.9	258
116	ILâ€18 associates to microvesicles shed from human macrophages by a LPS/TLRâ€4 independent mechanism in response to P2X receptor stimulation. European Journal of Immunology, 2012, 42, 3334-3345.	2.9	65
117	The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death and Disease, 2012, 3, e370-e370.	6.3	117
118	Nimodipine inhibits ILâ€1β release stimulated by amyloid β from microglia. British Journal of Pharmacology, 2012, 167, 1702-1711.	5.4	45
119	Purinergic P2Y2 Receptors Promote Neutrophil Infiltration and Hepatocyte Death in Mice With Acute Liver Injury. Gastroenterology, 2012, 143, 1620-1629.e4.	1.3	75
120	P2 receptors and immunity. Microbes and Infection, 2012, 14, 1254-1262.	1.9	50
121	AMP Affects Intracellular Ca2+ Signaling, Migration, Cytokine Secretion and T Cell Priming Capacity of Dendritic Cells. PLoS ONE, 2012, 7, e37560.	2.5	9
122	P2X7 receptorâ€stimulation causes fever <i>via</i> PGE2 and ILâ€1î² release. FASEB Journal, 2012, 26, 2951-2962.	0.5	123
123	The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood, 2012, 120, 2365-2375.	1.4	83
124	Special issue on cell and molecular biology of purinergic signalling: an introduction. Purinergic Signalling, 2012, 8, 341-341.	2.2	4
125	P2X7 receptor-stimulation causes fever via PGE2 and IL-1Î ² release. , 2012, 26, 2951.		1
126	P2X7 receptor drives osteoclast fusion by increasing the extracellular adenosine concentration. FASEB Journal, 2011, 25, 1264-1274.	0.5	81

Francesco Di Virgilio

#	Article	IF	CITATIONS
127	Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science, 2011, 334, 1573-1577.	12.6	1,159
128	Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Experimental Hematology, 2011, 39, 360-374.e5.	0.4	73
129	European meeting "P2 receptors: new targets for the treatment of osteoporosis― Purinergic Signalling, 2011, 7, 275-276.	2.2	4
130	The P2X7 Receptor and Pannexin-1 Are Both Required for the Promotion of Multinucleated Macrophages by the Inflammatory Cytokine GM-CSF. Journal of Immunology, 2011, 187, 3878-3887.	0.8	47
131	P2X ₇ Receptor Signaling in the Pathogenesis of Smoke-Induced Lung Inflammation and Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 423-429.	2.9	130
132	Purinergic Regulation of Airway Inflammation. Sub-Cellular Biochemistry, 2011, 55, 159-193.	2.4	7
133	P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Frontiers in Bioscience - Scholar, 2011, S3, 1443.	2.1	130
134	ATP secreted by endothelial cells blocks CX3CL1-elicited natural killer cell chemotaxis and cytotoxicity via P2Y11 receptor activation. Blood, 2010, 116, 4492-4500.	1.4	49
135	Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nature Medicine, 2010, 16, 1434-1438.	30.7	376
136	The purinergic receptor P2Y ₂ receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1545-1553.	5.7	141
137	Extracellular Adenosine Triphosphate and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 928-934.	5.6	174
138	Dysregulation of P2X7 receptor-inflammasome axis in SAPHO syndrome: successful treatment with anakinra. Rheumatology, 2010, 49, 1416-1418.	1.9	84
139	Purinergic Receptor Inhibition Prevents the Development of Smoke-Induced Lung Injury and Emphysema. Journal of Immunology, 2010, 185, 688-697.	0.8	119
140	Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB Journal, 2010, 24, 3393-3404.	0.5	218
141	Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7. Journal of Biological Chemistry, 2010, 285, 21165-21174.	3.4	10
142	Functional and structural alterations in the endoplasmic reticulum and mitochondria during apoptosis triggered by C2-ceramide and CD95/APO-1/FAS receptor stimulation. Biochemical and Biophysical Research Communications, 2010, 391, 575-581.	2.1	17
143	The Inflammation Signaling Molecule ATP Regulates Human CD4+ T Cell Functions. Blood, 2010, 116, 3901-3901.	1.4	0
144	Purinergic Stimulation of Human Bone Marrow-Derived Mesenchymal Stem Cells Modulate Their Function and Differentiation Potential., Blood, 2010, 116, 3848-3848	1.4	0

#	Article	IF	CITATIONS
145	5-Hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-Cell Priming Capacity of Dendritic Cells In Vitro and In Vivo. PLoS ONE, 2009, 4, e6453.	2.5	137
146	Expression of the P2X7 Receptor Increases the Ca2+ Content of the Endoplasmic Reticulum, Activates NFATc1, and Protects from Apoptosis. Journal of Biological Chemistry, 2009, 284, 10120-10128.	3.4	95
147	Activation of Microglia by Amyloid β Requires P2X7 Receptor Expression. Journal of Immunology, 2009, 182, 4378-4385.	0.8	256
148	1513A>C Polymorphism in the P2X7 Receptor Gene in Patients with Papillary Thyroid Cancer: Correlation with Histological Variants and Clinical Parameters. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 695-698.	3.6	43
149	Dysfunctional inflammasome in Schnitzler's syndrome. Rheumatology, 2009, 48, 1304-1308.	1.9	77
150	Extracellular ATP Acting at the P2X7 Receptor Inhibits Secretion of Soluble HLA-G from Human Monocytes. Journal of Immunology, 2009, 183, 4302-4311.	0.8	34
151	P2X7: a growth-promoting receptor—implications for cancer. Purinergic Signalling, 2009, 5, 251-256.	2.2	124
152	Editorial. Purinergic Signalling, 2009, 5, 127-128.	2.2	0
153	Identification of novel immunosuppressive pathways paves the way for drug discovery. Current Opinion in Pharmacology, 2009, 9, 445-446.	3.5	4
154	Extracellular nucleotides as negative modulators of immunity. Current Opinion in Pharmacology, 2009, 9, 507-513.	3.5	107
155	Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 2009, 32, 79-87.	8.6	212
156	Purinergic Signaling Modulates Human Bone Marrow-Derived Mesenchymal Stem Cells Function Blood, 2009, 114, 1441-1441.	1.4	1
157	P2X ₇ gene polymorphisms do not appear to be a susceptibility gene locus in sporadic cases of systemic lupus erythematosus. Tissue Antigens, 2008, 72, 487-490.	1.0	14
158	The Human Cathelicidin LL-37 Modulates the Activities of the P2X7 Receptor in a Structure-dependent Manner. Journal of Biological Chemistry, 2008, 283, 30471-30481.	3.4	121
159	Increased P2X7 Receptor Expression and Function in Thyroid Papillary Cancer: A New Potential Marker of the Disease?. Endocrinology, 2008, 149, 389-396.	2.8	123
160	Activation of Human Alveolar Macrophages via P2 Receptors: Coupling to Intracellular Ca2+ Increases and Cytokine Secretion. Journal of Immunology, 2008, 181, 2181-2188.	0.8	57
161	Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase. PLoS ONE, 2008, 3, e2599.	2.5	546
162	Stimulation of P2 (P2X 7) receptors in human dendritic cells induces the release of tissue factorâ€bearing microparticles. FASEB Journal, 2007, 21, 1926-1933.	0.5	87

#	Article	IF	CITATIONS
163	Multiple P2X receptors are involved in the modulation of apoptosis in human mesangial cells: evidence for a role of P2X4. American Journal of Physiology - Renal Physiology, 2007, 292, F1537-F1547.	2.7	30
164	Increased sensitivity to extracellular ATP of fibroblasts from patients affected by systemic sclerosis. Annals of the Rheumatic Diseases, 2007, 66, 1124-1125.	0.9	9
165	Stimulation of P2 receptors causes release of IL-1β–loaded microvesicles from human dendritic cells. Blood, 2007, 109, 3856-3864.	1.4	229
166	The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 2007, 109, 533-542.	1.4	93
167	Liaisons dangereuses: P2X7 and the inflammasome. Trends in Pharmacological Sciences, 2007, 28, 465-472.	8.7	446
168	Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Medicine, 2007, 13, 913-919.	30.7	559
169	Stimulation of Purinergic Receptors Modulates Chemokine Expression in Human Keratinocytes. Journal of Investigative Dermatology, 2007, 127, 660-667.	0.7	51
170	Modulation of P2X7 receptor functions by polymyxin B: crucial role of the hydrophobic tail of the antibiotic molecule. British Journal of Pharmacology, 2007, 150, 445-454.	5.4	33
171	Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. European Journal of Neuroscience, 2007, 25, 2741-2754.	2.6	128
172	Purinergic signalling in the immune system. A brief update. Purinergic Signalling, 2007, 3, 1-3.	2.2	84
173	A role for P2X7in microglial proliferation. Journal of Neurochemistry, 2006, 99, 745-758.	3.9	127
174	First joint Italian-German Purine Club meeting â€~Progress in Purinergic Receptor Pharmacology and Function′. Purinergic Signalling, 2006, 2, 573-574.	2.2	0
175	P2X7 purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability. Cellular Immunology, 2006, 244, 10-18.	3.0	75
176	Adenosine $5\hat{a}\in^2$ -triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. , 2006, 112, 358-404.		870
177	The P2X7 Receptor Sustains the Growth of Human Neuroblastoma Cells through a Substance P–Dependent Mechanism. Cancer Research, 2006, 66, 907-914.	0.9	137
178	Activation of human eosinophils via P2 receptors: novel findings and future perspectives. Journal of Leukocyte Biology, 2006, 79, 7-15.	3.3	27
179	Involvement of the Purinergic P2X7 Receptor in the Formation of Multinucleated Giant Cells. Journal of Immunology, 2006, 177, 7257-7265.	0.8	66
180	The P2X7 Receptor: A Key Player in IL-1 Processing and Release. Journal of Immunology, 2006, 176, 3877-3883.	0.8	949

#	Article	IF	CITATIONS
181	Purinergic Signalling between Axons and Microglia. Novartis Foundation Symposium, 2006, 276, 253-262.	1.1	16
182	Purinergic Signaling in Inflammation and Immunomodulation. , 2006, , 159-193.		0
183	Purinergic modulation of mesangial extracellular matrix production: Role in diabetic and other glomerular diseases. Kidney International, 2005, 67, 875-885.	5.2	63
184	Purinergic mechanism in the immune system: A signal of danger for dendritic cells. Purinergic Signalling, 2005, 1, 205-209.	2.2	79
185	P2X7 receptor: Death or life?. Purinergic Signalling, 2005, 1, 219-227.	2.2	126
186	Leukocyte P2 Receptors: A Novel Target for Anti-inflammatory and Antitumor Therapy. Current Drug Targets Cardiovascular & Haematological Disorders, 2005, 5, 85-99.	2.0	36
187	5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. International Immunology, 2005, 17, 599-606.	4.0	171
188	A Novel Recombinant Plasma Membrane-targeted Luciferase Reveals a New Pathway for ATP Secretion. Molecular Biology of the Cell, 2005, 16, 3659-3665.	2.1	283
189	Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development (Cambridge), 2005, 132, 2873-2882.	2.5	66
190	Extracellular Adenosine 5′-Triphosphate Modulates Interleukin-6 Production by Human Thyrocytes through Functional Purinergic P2 Receptors. Endocrinology, 2005, 146, 3172-3178.	2.8	21
191	A His-155 to Tyr Polymorphism Confers Gain-of-Function to the Human P2X7 Receptor of Human Leukemic Lymphocytes. Journal of Immunology, 2005, 175, 82-89.	0.8	144
192	Basal Activation of the P2X7 ATP Receptor Elevates Mitochondrial Calcium and Potential, Increases Cellular ATP Levels, and Promotes Serum-independent Growth. Molecular Biology of the Cell, 2005, 16, 3260-3272.	2.1	242
193	The P2Y14 Receptor of Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 601-609.	2.9	90
194	Recent progress in the discovery of antagonists acting at P2X7receptor. Expert Opinion on Therapeutic Patents, 2005, 15, 271-287.	5.0	17
195	In Vitro and In Vivo Induction of Human Hematopoietic Stem Cell Migration by Extracellular UTP Blood, 2005, 106, 1730-1730.	1.4	Ο
196	New Pathways for Reactive Oxygen Species Generation in Inflammation and Potential Novel Pharmacological Targets. Current Pharmaceutical Design, 2004, 10, 1647-1652.	1.9	58
197	Enhanced P2X 7 Activity in Human Fibroblasts From Diabetic Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1240-1245.	2.4	50
198	The Antibiotic Polymyxin B Modulates P2X7 Receptor Function. Journal of Immunology, 2004, 173, 4652-4660.	0.8	79

#	Article	IF	CITATIONS
199	The Serotoninergic Receptors of Human Dendritic Cells: Identification and Coupling to Cytokine Release. Journal of Immunology, 2004, 172, 6011-6019.	0.8	190
200	Venous Leg Ulcers And Apoptosis: A TIMP-3-Mediated Pathway?. Journal of Investigative Dermatology, 2004, 123, 1210-1212.	0.7	2
201	Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5709-5712.	2.2	12
202	Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood, 2004, 104, 1662-1670.	1.4	111
203	Agonists and Antagonists Acting at P2X7 Receptor. Current Topics in Medicinal Chemistry, 2004, 4, 1707-1717.	2.1	80
204	Extracellular ATP induces cell death in CD4+/CD8+ double-positive thymocytes in mice infected with Trypanosoma cruzi. Microbes and Infection, 2003, 5, 1363-1371.	1.9	39
205	Defective P2Y purinergic receptor function: A possible novel mechanism for impaired glucose transport. Journal of Cellular Physiology, 2003, 197, 435-444.	4.1	26
206	Extracellular ATP, P2 receptors, and inflammation. Drug Development Research, 2003, 59, 171-174.	2.9	15
207	Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. British Journal of Pharmacology, 2003, 138, 1244-1250.	5.4	68
208	Novel data point to a broader mechanism of action of oxidized ATP: the P2X7 receptor is not the only target. British Journal of Pharmacology, 2003, 140, 441-443.	5.4	59
209	Calcium and apoptosis: facts and hypotheses. Oncogene, 2003, 22, 8619-8627.	5.9	439
210	Synthesis and Biological Activity ofN-Arylpiperazine-Modified Analogues of KN-62, a Potent Antagonist of the Purinergic P2X7Receptor. Journal of Medicinal Chemistry, 2003, 46, 1318-1329.	6.4	69
211	Tyrosine Phosphorylation of HSP90 within the P2X7 Receptor Complex Negatively Regulates P2X7 Receptors. Journal of Biological Chemistry, 2003, 278, 37344-37351.	3.4	98
212	Extracellular ATP Causes ROCK I-dependent Bleb Formation in P2X7-transfected HEK293 Cells. Molecular Biology of the Cell, 2003, 14, 2655-2664.	2.1	124
213	Alerting and tuning the immune response by extracellular nucleotides. Journal of Leukocyte Biology, 2003, 73, 339-343.	3.3	184
214	The Influence of Lysophosphatidic Acid on the Functions of Human Dendritic Cells. Journal of Immunology, 2002, 169, 4129-4135.	0.8	87
215	Sphingosine 1â€phosphate induces Chemotaxis of immature dendritic cells and modulates cytokineâ€release in mature human dendritic cells for emergence of Th2 immune responses. FASEB Journal, 2002, 16, 625-627.	0.5	177
216	Synthesis, Biological Activity and Molecular Modeling Studies of 1,2,3,4-Tetrahydroiso-quinoline Derivatives as Conformationally Constrained Analogues of KN62, a Potent Antagonist of the P2X7-Receptor Containing a Tyrosine Moiety. Arzneimittelforschung, 2002, 52, 273-285.	0.4	8

#	Article	IF	CITATIONS
217	Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin–sensitive P2y receptors. Blood, 2002, 100, 925-932.	1.4	144
218	P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood, 2002, 99, 706-708.	1.4	179
219	Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood, 2002, 99, 1715-1722.	1.4	115
220	Expression and function of histamine receptors in human monocyte-derived dendritic cells. Journal of Allergy and Clinical Immunology, 2002, 109, 839-846.	2.9	135
221	The P2X7 receptor of CLL lymphocytes-a molecule with a split personality. Lancet, The, 2002, 360, 1898-1899.	13.7	18
222	A role for calcium in Bcl-2 action?. Biochimie, 2002, 84, 195-201.	2.6	46
223	P2 receptors: new potential players in atherosclerosis. British Journal of Pharmacology, 2002, 135, 831-842.	5.4	113
224	Proinflammatory Cytokines Inhibit Secretion in Rat Bile Duct Epithelium. Gastroenterology, 2001, 121, 156-169.	1.3	119
225	Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 2001, 97, 587-600.	1.4	645
226	Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Molecular Human Reproduction, 2001, 7, 119-128.	2.8	87
227	Extracellular ATP activates transcription factor NFAT in mouse microglial cells. Drug Development Research, 2001, 52, 213-219.	2.9	1
228	Molecular machinery and signaling events in apoptosis. Drug Development Research, 2001, 52, 558-570.	2.9	19
229	Proapoptotic plasma membrane pore: P2X7 receptor. Drug Development Research, 2001, 52, 571-578.	2.9	11
230	First international workshop on nucleotides and their receptors in the immune system. Drug Development Research, 2001, 53, 51-51.	2.9	0
231	Functional characterization of P2Y and P2X receptors in human eosinophils. Journal of Cellular Physiology, 2001, 188, 329-336.	4.1	35
232	The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO Journal, 2001, 20, 2690-2701.	7.8	533
233	Extracellular ATP Induces a Distorted Maturation of Dendritic Cells and Inhibits Their Capacity to Initiate Th1 Responses. Journal of Immunology, 2001, 166, 1611-1617.	0.8	199
234	A Defect in Glycogen Synthesis Characterizes Insulin Resistance in Hypertensive Patients With Type 2 Diabetes. Hypertension, 2001, 37, 1492-1496.	2.7	15

#	Article	IF	CITATIONS
235	Synthesis of conformationally constrained analogues of KN62, a potent antagonist of the P2X 7 -receptor. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 681-684.	2.2	30
236	Assignment of ectoâ€nucleoside triphosphate diphosphohydrolaseâ€1/cd39 expression to microglia and vasculature of the brain. European Journal of Neuroscience, 2000, 12, 4357-4366.	2.6	55
237	High glucose modulates P2X 7 receptor-mediated function in human primary fibroblasts. Diabetologia, 2000, 43, 1248-1256.	6.3	51
238	Adenosine triphosphate–induced oxygen radical production and CD11b up-regulation: Ca++ mobilization and actin reorganization in human eosinophils. Blood, 2000, 95, 973-978.	1.4	79
239	Kinetics and Mechanism of ATP-Dependent IL-1β Release from Microglial Cells. Journal of Immunology, 2000, 164, 4893-4898.	0.8	258
240	Reduced Loading of Intracellular Ca2+ Stores and Downregulation of Capacitative Ca2+Influx in Bcl-2–Overexpressing Cells. Journal of Cell Biology, 2000, 148, 857-862.	5.2	435
241	The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB Journal, 2000, 14, 2466-2476.	0.5	149
242	P2X ₇ Receptor and Polykarion Formation. Molecular Biology of the Cell, 2000, 11, 3169-3176.	2.1	61
243	P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Letters, 2000, 486, 217-224.	2.8	65
244	Dr. Jekyll/Mr. Hyde: the dual role of extracellular ATP. Journal of the Autonomic Nervous System, 2000, 81, 59-63.	1.9	76
245	Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. European Journal of Neuroscience, 2000, 12, 4357-4366.	2.6	27
246	Increased Proliferation Rate of Lymphoid Cells Transfected with the P2X7 ATP Receptor. Journal of Biological Chemistry, 1999, 274, 33206-33208.	3.4	187
247	C27 A novel pathway for fibroblasts activation and IL-6 release: Possible implications in atheroma formation. Atherosclerosis, 1999, 145, S7.	0.8	1
248	ATP receptors and giant cell formation. Journal of Leukocyte Biology, 1999, 66, 723-726.	3.3	42
249	Chapter 29 The P2Z/P2X7 receptor of microglial cells: A novel immunomodulatory receptor. Progress in Brain Research, 1999, 120, 355-368.	1.4	69
250	ATP as a death factor. BioFactors, 1998, 8, 301-303.	5.4	28
251	Cytolytic P2X purinoceptors. Cell Death and Differentiation, 1998, 5, 191-199.	11.2	243
252	Tenidap enhances P2Z/P2X7 receptor signalling in macrophages. European Journal of Pharmacology, 1998, 355, 235-244.	3.5	31

#	Article	IF	CITATIONS
253	Purinergic P2X7 receptor: A pivotal role in inflammation and immunomodulation. Drug Development Research, 1998, 45, 207-213.	2.9	39
254	Physiological Roles for P2 Receptors in Platelets, Visceral Smooth Muscle, and the Immune and Endocrine Systems. , 1998, , 361-411.		5
255	P2 Purinoceptors and Regulation of the Function of Platelets, Erythrocytes and Mast Cells. Developments in Cardiovascular Medicine, 1998, , 290-301.	0.1	Ο
256	Purinergic Modulation of Interleukin-1β Release from Microglial Cells Stimulated with Bacterial Endotoxin. Journal of Experimental Medicine, 1997, 185, 579-582.	8.5	457
257	Spontaneous Cell Fusion in Macrophage Cultures Expressing High Levels of the P2Z/P2X7 Receptor. Journal of Cell Biology, 1997, 138, 697-706.	5.2	160
258	ATP-mediated cytotoxicity in microglial cells. Neuropharmacology, 1997, 36, 1295-1301.	4.1	269
259	Spermatozoa. Expert Opinion on Therapeutic Targets, 1997, 1, 215-217.	1.0	0
260	4Intracellular Free Calcium Abnormalities in Fibroblasts From Non–Insulin-Dependent Diabetic Patients With and Without Arterial Hypertension. Hypertension, 1997, 29, 1007-1013.	2.7	11
261	Role of the Purinergic P2Z Receptor in Spontaneous Cell Death in J774 Macrophage Cultures. Biochemical and Biophysical Research Communications, 1996, 218, 176-181.	2.1	68
262	Capacitative calcium entry in rat Sertoli cells. Journal of Endocrinological Investigation, 1996, 19, 516-523.	3.3	7
263	An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood, 1996, 87, 682-690.	1.4	174
264	Mechanism of human sperm activation by extracellular ATP. American Journal of Physiology - Cell Physiology, 1996, 270, C1709-C1714.	4.6	42
265	Chapter 12 The Basis of Intracellular Calcium Homeostasis in Eukaryotic Cells. Principles of Medical Biology, 1996, , 305-327.	0.1	0
266	Role of P2-purinergic receptors in rat Leydig cell steroidogenesis. Biochemical Journal, 1996, 320, 499-504.	3.7	44
267	Enhanced Effects of Insulin and Angiotensin II on Intracellular pH and Free Cytosolic Calcium in Fibroblasts from Microalbuminuric Patients with Non-Insulin-Dependent Diabetes Mellitus. Clinical Science, 1996, 91, 703-710.	4.3	2
268	ROLE OF PURINERGIC RECEPTORS IN CELL DEATH AND CYTOKINE RELEASE IN THE IMMUNE SYSTEM. Biochemical Society Transactions, 1996, 24, 560S-560S.	3.4	0
269	Purinoceptor function in the immune system. Drug Development Research, 1996, 39, 319-329.	2.9	43
270	Reply to Persechini et al Trends in Immunology, 1996, 17, 293-294.	7.5	0

#	Article	IF	CITATIONS
271	Intracellular calcium handling by fibroblasts from non-insulin dependent diabetic patients with and without hypertension and microalbuminuria. Kidney International, 1996, 50, 618-626.	5.2	6
272	Involvement of osmo-sensitive calcium influx in human sperm activation. Molecular Human Reproduction, 1996, 2, 903-909.	2.8	45
273	P2 Purinoceptors in the Immune System. Novartis Foundation Symposium, 1996, 198, 290-308.	1.1	28
274	Extracellular ATP activates different signalling pathways in rat Sertoli cells. Biochemical Journal, 1995, 311, 269-274.	3.7	39
275	Ionic regulation of endonuclease activity in PC12 cells. Biochemical Journal, 1995, 311, 1033-1038.	3.7	17
276	The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Trends in Immunology, 1995, 16, 524-528.	7.5	355
277	Differential Modulation by Protein Kinase C of Progesterone-Activated Responses in Human Sperm. Biochemical and Biophysical Research Communications, 1995, 206, 408-413.	2.1	40
278	The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role Journal of Clinical Investigation, 1995, 95, 1207-1216.	8.2	219
279	Role of Extracellular ATP in Cell-Mediated Cytotoxicity: A Study with ATP-Sensitive and ATP-Resistant Macrophages. Cellular Immunology, 1994, 156, 458-467.	3.0	26
280	Apoptosis Is Dependent on Intracellular Zinc and Independent of Intracellular Calcium in Lymphocytes. Experimental Cell Research, 1994, 211, 339-343.	2.6	93
281	Macrophages loaded with doxorubicin by ATP-mediated permeabilization: Potential carriers for antitumor therapy. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1224, 269-276.	4.1	24
282	Synergistic Effect of Extracellular Adenosine 5′-Triphosphate and Tumor Necrosis Factor on DNA Degradation. Cellular Immunology, 1993, 152, 110-119.	3.0	11
283	Ion fluxes through the progesterone-activated channel of the sperm plasma membrane. Biochemical Journal, 1993, 294, 279-283.	3.7	103
284	Cell-Permeabilizing Properties of Extracellular ATP in Relation to Lymphocyte-Mediated Cytotoxicity. , 1993, , 314-320.		0
285	Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages. Biochemical Journal, 1992, 288, 897-901.	3.7	94
286	<i>In Vitro</i> Cytotoxic Effects of Extracellular ATP. ATLA Alternatives To Laboratory Animals, 1992, 20, 66-70.	1.0	7
287	Extracellular ATP causes lysis of mouse thymocytes and activates a plasma membrane ion channel. Biochemical Journal, 1991, 274, 139-144.	3.7	92
288	Identification, kinetic properties and intracellular localization of the (Ca2+-Mg2+)-ATPase from the intracellular stores of chicken cerebellum. Biochemical Journal, 1991, 275, 555-561.	3.7	47

#	Article	IF	CITATIONS
289	Cell-mediated cytotoxicity: ATP as an effector and the role of target cells. Current Opinion in Immunology, 1991, 3, 71-75.	5.5	59
290	Ca(2+)-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages Journal of Cell Biology, 1991, 113, 757-767.	5.2	173
291	Mechanisms of Neutrophil and Macrophage Motility. Advances in Experimental Medicine and Biology, 1991, 297, 13-22.	1.6	3
292	Structural and functional aspects of calcium homeostasis in eukaryotic cells. FEBS Journal, 1990, 193, 599-622.	0.2	196
293	Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium, 1990, 11, 57-62.	2.4	299
294	Extracellular ATP as a possible mediator of cell-mediated cytotoxicity. Trends in Immunology, 1990, 11, 274-277.	7.5	116
295	Effects of Extracellular ATP on Mononuclear Phagocytes. Annals of the New York Academy of Sciences, 1990, 603, 120-128.	3.8	30
296	Review Structural and functional aspects of calcium homeostasis in eukaryotic cells. , 1990, , 217-240.		0
297	Chapter 21 Organic-Anion Transport Inhibitors to Facilitate Measurement of Cytosolic Free Ca2+ with Fura-2. Methods in Cell Biology, 1989, 31, 453-462.	1.1	51
298	Interaction of lymphokine-activated killer cells with susceptible targets does not induce second messenger generation and cytolytic granule exocytosis Journal of Experimental Medicine, 1989, 170, 665-677.	8.5	41
299	Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels Journal of Cell Biology, 1988, 106, 657-666.	5.2	189
300	Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. Biochemical Journal, 1988, 256, 959-963.	3.7	161
301	Calcium and inositolphosphates in the activation of T cell-mediated cytotoxicity Journal of Experimental Medicine, 1987, 166, 33-42.	8.5	68
302	Resting and stimulated cytosolic free calcium levels in neutrophils from patients with Bartter's syndrome. Clinical Science, 1987, 72, 483-488.	4.3	28
303	Measurement of calcium release from sarcoplasmic reticulum of skeletal muscle: Effect of calcium and inositol 1,4,5-trisphosphate. Methods in Enzymology, 1987, 141, 3-18.	1.0	2
304	Effect of cytochalasins on cytosolic-free calcium concentration and phosphoinositide metabolism in leukocytes. Experimental Cell Research, 1987, 168, 285-298.	2.6	57
305	Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle. FEBS Letters, 1986, 197, 1-4.	2.8	51
306	Cytochalasins increase the intracellular free Ca2+ concentration in human neutrophils. Cell Biology International Reports, 1986, 10, 158-158.	0.6	0

#	Article	IF	CITATIONS
307	Is a guanine nucleotide-binding protein involved in excitation-contraction coupling in skeletal muscle?. EMBO Journal, 1986, 5, 259-262.	7.8	48
308	Activation of muscarinic receptors in PC12 cells. Stimulation of Ca2+ influx and redistribution. Biochemical Journal, 1986, 234, 547-553.	3.7	66
309	Activation of muscarinic receptors in PC12 cells. Correlation between cytosolic Ca2+ rise and phosphoinositide hydrolysis. Biochemical Journal, 1986, 234, 555-562.	3.7	53
310	Inositol phosphate formation in fMet-Leu-Phe-stimulated human neutrophils does not require an increase in the cytosolic free Ca2+ concentration. Biochemical Journal, 1985, 229, 361-367.	3.7	90
311	Ca2+-dependent and Ca2+-independent phagocytosis in human neutrophils. Nature, 1985, 315, 509-511.	27.8	213
312	Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature, 1985, 316, 347-349.	27.8	273
313	Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca2+ concentration in PC12 cells Journal of Cell Biology, 1985, 100, 1330-1333.	5.2	78
314	Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by the activation of muscarinic receptors in PC12 cells. Biochemical and Biophysical Research Communications, 1985, 127, 310-317.	2.1	176
315	Mechanism of desensitization of neutrophil response to N-formylmethionylleucylphenylalanine by slow rate of receptor occupancy. Studies on changes in Ca2+ concentration and phosphatidylinositol turnover. Biochimica Et Biophysica Acta - General Subjects, 1985, 838, 23-31.	2.4	18
316	Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature, 1984, 310, 691-693.	27.8	348
317	Cyclic AMP inhibition of fMet-Leu-Phe-dependent metabolic responses in human neutrophils is not due to its effects on cytosolic Ca2+. Biochemical Journal, 1984, 224, 629-635.	3.7	77
318	Relationship between neurotransmitter release and cytosolic free calcium in PC12 cells. Biochemical Society Transactions, 1984, 12, 1077-1077.	3.4	0
319	Cytosol Mg2+ modulates Ca2+ ionophore induced secretion from rabbit neutrophils. FEBS Letters, 1983, 163, 315-318.	2.8	20
320	Sidedness of e ^{â^'} Donation and Stoichiometry of H ⁺ Pumps at Sites II + III in Mitochondria from Rat Liver. FEBS Journal, 1981, 117, 225-231.	0.2	16
321	H+/site, charge/site, and ATP/site ratios in mitochondrial electron transport. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 2123-2127.	7.1	45