Harish Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8887994/publications.pdf

Version: 2024-02-01

430874 526287 27 947 18 27 h-index citations g-index papers 28 28 28 1206 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Understanding the Kinetic Roles of the Inducer Heparin and of Rod-like Protofibrils during Amyloid Fibril Formation by Tau Protein. Journal of Biological Chemistry, 2011, 286, 38948-38959.	3.4	122
2	Salt-Induced Modulation of the Pathway of Amyloid Fibril Formation by the Mouse Prion Protein. Biochemistry, 2010, 49, 7615-7624.	2.5	101
3	Evidence for the Existence of a Secondary Pathway for Fibril Growth during the Aggregation of Tau. Journal of Molecular Biology, 2012, 421, 296-314.	4.2	57
4	Development of the Structural Core and of Conformational Heterogeneity during the Conversion of Oligomers of the Mouse Prion Protein to Worm-like Amyloid Fibrils. Journal of Molecular Biology, 2012, 423, 217-231.	4.2	54
5	Rational Stabilization of Helix 2 of the Prion Protein Prevents Its Misfolding and Oligomerization. Journal of the American Chemical Society, 2014, 136, 16704-16707.	13.7	53
6	Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry, 2015, 54, 4431-4442.	2.5	53
7	Mechanistic Studies Unravel the Complexity Inherent in Tau Aggregation Leading to Alzheimer's Disease and the Tauopathies. Biochemistry, 2013, 52, 4107-4126.	2.5	51
8	Unfolding Rates of Barstar Determined in Native and Low Denaturant Conditions Indicate the Presence of Intermediates. Biochemistry, 2002, 41, 1568-1578.	2.5	48
9	Partially Unfolded Forms of the Prion Protein Populated under Misfolding-promoting Conditions. Journal of Biological Chemistry, 2015, 290, 25227-25240.	3.4	42
10	Mechanism of aggregation and membrane interactions of mammalian prion protein. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1927-1935.	2.6	37
11	Unraveling the Molecular Mechanism of pH-Induced Misfolding and Oligomerization of the Prion Protein. Journal of Molecular Biology, 2016, 428, 1345-1355.	4.2	36
12	Resonance Raman Spectroscopic Measurements Delineate the Structural Changes that Occur during Tau Fibril Formation. Biochemistry, 2014, 53, 6550-6565.	2.5	34
13	Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angewandte Chemie - International Edition, 2015, 54, 7529-7533.	13.8	34
14	NMR Identification and Characterization of the Flexible Regions in the 160 kDa Molten Globule-Like Aggregate of Barstar at Low pHâ€. Biochemistry, 2002, 41, 9885-9899.	2.5	29
15	Modulation of the extent of structural heterogeneity in α-synuclein fibrils by the small molecule thioflavin T. Journal of Biological Chemistry, 2017, 292, 16891-16903.	3.4	28
16	Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR. Journal of Molecular Biology, 2017, 429, 1852-1872.	4.2	26
17	Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers. Journal of Molecular Biology, 2016, 428, 3935-3947.	4.2	21
18	The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated. Biochemistry, 2016, 55, 459-469.	2.5	20

#	Article	IF	CITATIONS
19	The G126V Mutation in the Mouse Prion Protein Hinders Nucleation-Dependent Fibril Formation by Slowing Initial Fibril Growth and by Increasing the Critical Concentration. Biochemistry, 2017, 56, 5931-5942.	2.5	20
20	Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chemical Communications, 2018, 54, 6230-6242.	4.1	20
21	Mechanistic and Structural Origins of the Asymmetric Barrier to Prion-like Cross-Seeding between Tau-3R and Tau-4R. Journal of Molecular Biology, 2018, 430, 5304-5312.	4.2	18
22	Ruggedness in the Free Energy Landscape Dictates Misfolding of the Prion Protein. Journal of Molecular Biology, 2019, 431, 807-824.	4.2	16
23	Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 922-932.	2.3	8
24	Destabilization of polar interactions in the prion protein triggers misfolding and oligomerization. Protein Science, 2021, 30, 2258-2271.	7.6	5
25	The Lys 280 â†' Gln mutation mimicking diseaseâ€linked acetylation of Lys 280 in tau extends the struct core of fibrils and modulates their catalytic properties. Protein Science, 2021, 30, 785-803.	tural 7.6	4
26	Microsecond Dynamics During the Binding-induced Folding of an Intrinsically Disordered Protein. Journal of Molecular Biology, 2021, 433, 167254.	4.2	3
27	Elongation of Fibrils Formed by a Tau Fragment is Inhibited by a Transient Dimeric Intermediate. Journal of Physical Chemistry B, 2022, 126, 3385-3397.	2.6	1