
Umair H Bhatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8887914/publications.pdf Version: 2024-02-01

ΠΜΛΙΟ Η ΒΗΛΤΤΙ

#	Article	IF	CITATIONS
1	Effects of Transition Metal Oxide Catalysts on MEA Solvent Regeneration for the Post-Combustion Carbon Capture Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 5862-5868.	6.7	83
2	Performance and Mechanism of Metal Oxide Catalyst-Aided Amine Solvent Regeneration. ACS Sustainable Chemistry and Engineering, 2018, 6, 12079-12087.	6.7	77
3	Metal oxide catalyst-aided solvent regeneration: A promising method to economize post-combustion CO2 capture process. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 150-157.	5.3	51
4	Catalytic activity of facilely synthesized mesoporous HZSM-5 catalysts for optimizing the CO2 desorption rate from CO2-rich amine solutions. Chemical Engineering Journal, 2020, 389, 123439.	12.7	49
5	Efficient Ag ₂ O–Ag ₂ CO ₃ Catalytic Cycle and Its Role in Minimizing the Energy Requirement of Amine Solvent Regeneration for CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 10234-10240.	6.7	36
6	Energy minimization of carbon capture and storage by means of a novel process configuration. Energy Conversion and Management, 2020, 215, 112871.	9.2	34
7	Ion-exchanged montmorillonite as simple and effective catalysts for efficient CO2 capture. Chemical Engineering Journal, 2021, 413, 127476.	12.7	33
8	Practical and inexpensive acid-activated montmorillonite catalysts for energy-efficient CO ₂ capture. Green Chemistry, 2020, 22, 6328-6333.	9.0	29
9	A comprehensive thermodynamic performance assessment of CO2 liquefaction and pressurization system using a heat pump for carbon capture and storage (CCS) process. Energy Conversion and Management, 2020, 206, 112489.	9.2	29
10	Design and optimization of CO2 pressurization system integrated with a supercritical CO2 power cycle for the CO2 capture and storage system. Energy Conversion and Management, 2019, 195, 609-619.	9.2	26
11	Nafion/TiO2 nanoparticle decorated thin film composite hollow fiber membrane for efficient removal of SO2 gas. Separation and Purification Technology, 2019, 211, 377-390.	7.9	25
12	Unraveling the Role of Metal Oxide Catalysts in the CO ₂ Desorption Process from Nonaqueous Sorbents: An Experimental Study Carried out with ¹³ C NMR. ACS Sustainable Chemistry and Engineering, 2021, 9, 15419-15426.	6.7	25
13	Citronellal cyclisation over heteropoly acid supported on modified montmorillonite catalyst: effects of acidity and pore structure on catalytic activity. Research on Chemical Intermediates, 2018, 44, 2405-2423.	2.7	22
14	Experimental Study on the Selective Removal of SO ₂ from a Ship Exhaust Gas Stream Using a Membrane Contactor. Industrial & Engineering Chemistry Research, 2019, 58, 14897-14905.	3.7	20
15	Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration. Energy Conversion and Management, 2021, 244, 114495.	9.2	19
16	Advanced post combustion CO2 capture process – A systematic approach to minimize thermal energy requirement. Applied Thermal Engineering, 2021, 184, 116285.	6.0	16
17	Facilely Synthesized M-Montmorillonite (M = Cr, Fe, and Co) as Efficient Catalysts for Enhancing CO ₂ Desorption from Amine Solution. Industrial & Engineering Chemistry Research, 2021, 60, 13318-13325.	3.7	15
18	Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system. Energy, 2021, 228, 120580.	8.8	14

Umair H Bhatti

#	Article	IF	CITATIONS
19	Selective removal of SO2 from coal-fired flue gas by alkaline solvents using a membrane contactor. Chemical Engineering and Processing: Process Intensification, 2020, 147, 107772.	3.6	13
20	One pot menthol synthesis via hydrogenations of citral and citronellal over montmorillonite-supported Pd/Ni-heteropoly acid bifunctional catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 917-934.	1.7	12
21	Modification of postcombustion CO ₂ capture process: A technoâ€economic analysis. , 2021, 11, 165-182.		10
22	Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures. Energy, 2022, 239, 122216.	8.8	9
23	Development of catalysts for sulfuric acid decomposition in the sulfur–iodine cycle: a review. Catalysis Reviews - Science and Engineering, 2022, 64, 875-910.	12.9	5
24	Catalytic Characteristics of Metal Catalysts and Nitrate Salt of a Tripodal Ligand in a Basic Medium for Postcombustion CO ₂ Capture Process. ACS Sustainable Chemistry and Engineering, 0, ,	6.7	1