Jin K Montclare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/888776/publications.pdf

Version: 2024-02-01

236925 302126 1,697 63 25 39 citations h-index g-index papers 66 66 66 2019 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials, 2017, 132, 1-15.	11.4	105
2	Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials, 2014, 35, 1705-1715.	11.4	87
3	Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials, 2017, 134, 91-116.	11.4	75
4	Incorporation of unnatural amino acids for synthetic biology. Molecular BioSystems, 2010, 6, 65-80.	2.9	72
5	Engineered Coiled-Coil Protein Microfibers. Biomacromolecules, 2014, 15, 3503-3510.	5.4	70
6	N-Terminal Aliphatic Residues Dictate the Structure, Stability, Assembly, and Small Molecule Binding of the Coiled-Coil Region of Cartilage Oligomeric Matrix Protein. Biochemistry, 2009, 48, 8559-8567.	2.5	68
7	Biosynthesis and Stability of Coiledâ€Coil Peptides Containing (2 <i>S</i> ,4 <i>R</i>)â€5,5,5â€Trifluoroleucine and (2 <i>S</i> ,4 <i>S</i> ,4 <i>S</i>)â€5,5,5â€Trifluoroleucine. ChemBioChem, 2009, 10, 84-86.	2.6	67
8	Evolving Proteins of Novel Composition. Angewandte Chemie - International Edition, 2006, 45, 4518-4521.	13.8	65
9	Recent trends in peptide and protein-based hydrogels. Current Opinion in Structural Biology, 2020, 63, 97-105.	5.7	60
10	Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. Journal of Controlled Release, 2011, 152, 278-285.	9.9	55
11	Self-Assembled Protein- and Peptide-Based Nanomaterials. ACS Biomaterials Science and Engineering, 2019, 5, 4132-4147.	5.2	55
12	Proteinâ€Engineered Functional Materials. Advanced Healthcare Materials, 2019, 8, e1801374.	7.6	48
13	Enhanced Refoldability and Thermoactivity of Fluorinated Phosphotriesterase. ChemBioChem, 2011, 12, 1845-1848.	2.6	45
14	Thermoresponsive Protein-Engineered Coiled-Coil Hydrogel for Sustained Small Molecule Release. Biomacromolecules, 2019, 20, 3340-3351.	5.4	45
15	Artificial Protein Block Copolymers Blocks Comprising Two Distinct Selfâ€Assembling Domains. ChemBioChem, 2009, 10, 2733-2735.	2.6	44
16	Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers. Biomacromolecules, 2013, 14, 4360-4367.	5.4	39
17	Protein-Engineered Nanoscale Micelles for Dynamic ¹⁹ F Magnetic Resonance and Therapeutic Drug Delivery. ACS Nano, 2019, 13, 2969-2985.	14.6	39
18	Artificial Protein Block Polymer Libraries Bearing Two SADs: Effects of Elastin Domain Repeats. Biomacromolecules, 2011, 12, 4240-4246.	5.4	34

#	Article	IF	CITATIONS
19	Supramolecular assembly and small molecule recognition by genetically engineered protein block polymers composed of two SADs. Molecular BioSystems, 2010, 6, 1662.	2.9	33
20	Influence of global fluorination on chloramphenicol acetyltransferase activity and stability. Biotechnology and Bioengineering, 2006, 94, 921-930.	3.3	32
21	Influence of Fluorination on Protein-Engineered Coiled-Coil Fibers. Biomacromolecules, 2015, 16, 1210-1217.	5.4	31
22	Effects of Divalent Metals on Nanoscopic Fiber Formation and Small Molecule Recognition of Helical Proteins. Advanced Functional Materials, 2012, 22, 2154-2159.	14.9	30
23	A â€~KAHOOT!' Approach: The Effectiveness of Game-Based Learning for an Advanced Placement Biology Class. Simulation and Gaming, 2019, 50, 832-847.	1.9	29
24	Assembly of bioinspired helical protein fibers. Polymers for Advanced Technologies, 2008, 19, 454-468.	3.2	28
25	Modulating Supramolecular Assemblies and Mechanical Properties of Engineered Protein Materials by Fluorinated Amino Acids. Biomacromolecules, 2012, 13, 2273-2278.	5 . 4	28
26	Efficient siRNA delivery and gene silencing using a lipopolypeptide hybrid vector mediated by a caveolae-mediated and temperature-dependent endocytic pathway. Journal of Nanobiotechnology, 2019, 17, 11.	9.1	27
27	Protein Engineered Triblock Polymers Composed of Two SADs: Enhanced Mechanical Properties and Binding Abilities. Biomacromolecules, 2018, 19, 1552-1561.	5.4	26
28	Positional effects of monofluorinated phenylalanines on histone acetyltransferase stability and activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5449-5451.	2.2	24
29	Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials, 2014, 35, 7188-7193.	11.4	23
30	Development and Implementation of High School Chemistry Modules Using Touch-Screen Technologies. Journal of Chemical Education, 2012, 89, 1012-1018.	2.3	22
31	Engineered Coiled-Coil Protein for Delivery of Inverse Agonist for Osteoarthritis. Biomacromolecules, 2018, 19, 1614-1624.	5.4	19
32	Injectable recombinant block polymer gel for sustained delivery of therapeutic protein in post traumatic osteoarthritis. Biomaterials, 2022, 281, 121370.	11.4	19
33	Self-assembly of stimuli-responsive coiled-coil fibrous hydrogels. Soft Matter, 2021, 17, 6470-6476.	2.7	18
34	Using Touch-Screen Technology, Apps, and Blogs To Engage and Sustain High School Students' Interest in Chemistry Topics. Journal of Chemical Education, 2014, 91, 1818-1822.	2.3	16
35	Improved Stability and Half‣ife of Fluorinated Phosphotriesterase Using Rosetta. ChemBioChem, 2014, 15, 1761-1764.	2.6	16
36	Tunable Conformation-Dependent Engineered ProteinÂ-Gold Nanoparticle Nanocomposites. Biomacromolecules, 2015, 16, 1706-1713.	5 . 4	15

#	Article	IF	CITATIONS
37	Efficient Dual siRNA and Drug Delivery Using Engineered Lipoproteoplexes. Biomacromolecules, 2017, 18, 2688-2698.	5.4	14
38	Fluorinated chloramphenicol acetyltransferase thermostability and activity profile: Improved thermostability by a single-isoleucine mutant. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5907-5911.	2.2	13
39	Implementing and Evaluating Mentored Chemistryâ^'Biology Technology Lab Modules To Promote Early Interest in Science. Journal of Chemical Education, 2011, 88, 751-754.	2.3	11
40	Enhancing organophosphate hydrolase efficacy via protein engineering and immobilization strategies. Annals of the New York Academy of Sciences, 2020, 1480, 54-72.	3.8	11
41	Anisotropic nanocrystal arrays organized on protein lattices formed by recombinant clathrin fragments. Journal of Materials Chemistry, 2012, 22, 23335.	6.7	10
42	LabLessons: Effects of Electronic Prelabs on Student Engagement and Performance. Journal of Chemical Education, 2016, 93, 2012-2017.	2.3	9
43	Controlling Drug Absorption, Release, and Erosion of Photopatterned Protein Engineered Hydrogels. Biomacromolecules, 2020, 21, 3608-3619.	5 . 4	9
44	High-Throughput Microrheology for the Assessment of Protein Gelation Kinetics. Macromolecules, 2022, 55, 1239-1247.	4.8	8
45	Particle-Based Microrheology As a Tool for Characterizing Protein-Based Materials. ACS Biomaterials Science and Engineering, 2022, 8, 2747-2763.	5.2	8
46	Exploring the potential of engineered coiled-coil protein microfibers in drug delivery. Therapeutic Delivery, 2015, 6, 643-646.	2.2	7
47	Natural Composite Systems for Bioinspired Materials. Advances in Experimental Medicine and Biology, 2016, 940, 143-166.	1.6	7
48	Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release. Biomacromolecules, 2021, 22, 1509-1522.	5 . 4	7
49	Protein based biomaterials for therapeutic and diagnostic applications. Progress in Biomedical Engineering, 2022, 4, 012003.	4.9	7
50	Elastin-Based Protein Polymers. ACS Symposium Series, 2008, , 37-51.	0.5	6
51	Interactive online physics labs increase high school students' interest. Journal of Technology and Science Education, 2016, 6, 166.	1.2	5
52	Peptides as key components in the design of nonâ€viral vectors for gene delivery. Peptide Science, 2021, 113, e24189.	1.8	5
53	Effect of Divalent Metal Cations on the Conformation, Elastic Behavior, and Controlled Release of a Photocrosslinked Protein Engineered Hydrogel. ACS Applied Bio Materials, 2021, 4, 3587-3597.	4.6	5
54	Impact of phenylalanines outside the dimer interface on phosphotriesterase stability and function. Molecular BioSystems, 2017, 13, 2092-2106.	2.9	4

#	Article	IF	CITATIONS
55	Protein biomaterials for theranostic applications. Molecular Systems Design and Engineering, 2019, 4, 1074-1094.	3.4	4
56	From concept to reality: the use and impact of 3D prints as academic tools for high school biology education. Journal of Biological Education, 2022, 56, 528-539.	1.5	4
57	Engineered protein–iron oxide hybrid biomaterial for MRI-traceable drug encapsulation. Molecular Systems Design and Engineering, 2022, 7, 915-932.	3.4	4
58	Perspectives on blended learning through the on-line platform, LabLessons, for Chemistry. Journal of Technology and Science Education, 2018, 8, 34.	1.2	3
59	Design and Characterization of Fibers and Bionanocomposites Using the Coiled-Coil Domain of Cartilage Oligomeric Matrix Protein. Methods in Molecular Biology, 2018, 1798, 239-263.	0.9	3
60	Exploring the Viability and Role of Virtual Laboratories in Chemistry Education Using Two Original Modules. Journal of Chemical Education, 2022, 99, 1596-1603.	2.3	3
61	Characterization and identification of the protein partners of Fn3 domain in FnTm2. Protein Expression and Purification, 2012, 81, 42-48.	1.3	0
62	Engineered Proteins: Proteinâ€Engineered Functional Materials (Adv. Healthcare Mater. 11/2019). Advanced Healthcare Materials, 2019, 8, 1970047.	7.6	0
63	Enzyme Catalyzed Hydrolysis of Synthetic Polymers. ACS Symposium Series, 2020, , 47-63.	0.5	0