
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8887615/publications.pdf Version: 2024-02-01

XIAN-FULLIN

#	Article	IF	CITATIONS
1	Synthesis and Biological Evaluation of 1-(2-(6-Methoxynaphthalen-2-yl)-6-methylnicotinoyl)-4-Substituted Semicarbazides/Thiosemicarbazides as Anti-Tumor Nur77 Modulators. Molecules, 2022, 27, 1698.	3.8	2
2	Substrate Engineering in Lipase-Catalyzed Selective Polymerization of <scp>d</scp> -/ <scp>l</scp> -Aspartates and Diols to Prepare Helical Chiral Polyester. Biomacromolecules, 2021, 22, 918-926.	5.4	9
3	Electronic Effectâ€Guided Rational Design of <i>Candida antarctica</i> Lipase B for Kinetic Resolution Towards Diarylmethanols. Advanced Synthesis and Catalysis, 2021, 363, 1867-1872.	4.3	10
4	Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase. Nature Communications, 2021, 12, 3983.	12.8	53
5	Double Enzyme-Catalyzed One-Pot Synthesis of Enantiocomplementary Vicinal Fluoro Alcohols. Organic Letters, 2020, 22, 5446-5450.	4.6	8
6	Enantiocomplementary C–H Bond Hydroxylation Combining Photoâ€Catalysis and Wholeâ€Cell Biocatalysis in a Oneâ€Pot Cascade Process. European Journal of Organic Chemistry, 2020, 2020, 821-825.	2.4	19
7	Enzymatic Synthesis and Stereocomplex Formation of Chiral Polyester Containing Long-Chain Aliphatic Alcohol Backbone. Biomacromolecules, 2019, 20, 3584-3591.	5.4	8
8	Exploiting Cofactor Versatility to Convert a FADâ€Dependent Baeyer–Villiger Monooxygenase into a Ketoreductase. Angewandte Chemie - International Edition, 2019, 58, 14499-14503.	13.8	26
9	Dual-Enzyme-Catalyzed Synthesis of Enantiocomplementary Polyesters. ACS Macro Letters, 2019, 8, 1432-1436.	4.8	6
10	Enantiocomplementary Chiral Polyhydroxyenoate: Chemoenzymatic Synthesis and Helical Structure Control. ACS Macro Letters, 2019, 8, 1188-1193.	4.8	8
11	Customizing the Enantioselectivity of a Cyclohexanone Monooxygenase by a Strategy Combining "Sizeâ€Probes―with in silico Study. ChemCatChem, 2019, 11, 5085-5092.	3.7	1
12	Lightâ€Driven Kinetic Resolution of αâ€Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angewandte Chemie, 2019, 131, 8562-8566.	2.0	21
13	Lightâ€Driven Kinetic Resolution of αâ€Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angewandte Chemie - International Edition, 2019, 58, 8474-8478.	13.8	77
14	Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters. Journal of the American Chemical Society, 2019, 141, 7934-7945.	13.7	106
15	Enantiocomplementary decarboxylative hydroxylation combining photocatalysis and whole-cell biocatalysis in a one-pot cascade process. Green Chemistry, 2019, 21, 1907-1911.	9.0	31
16	Highly Focused Libraryâ€Based Engineering of <i>Candida antarctica</i> Lipase B with (<i>S</i>)â€Selectivity Towards <i>sec</i> â€Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 126-134.	4.3	19
17	Lipase-catalyzed synthesis of chiral poly(ester amide)s with an alternating sequence of hydroxy acid and <scp>l</scp> / <scp>d</scp> -aspartate units. Polymer Chemistry, 2018, 9, 1412-1420.	3.9	9
18	Stereoselectivity-Tailored, Metal-Free Hydrolytic Dynamic Kinetic Resolution of Morita–Baylis–Hillman Acetates Using an Engineered Lipase–Organic Base Cocatalyst. ACS Catalysis, 2017, 7, 4542-4549.	11.2	29

#	Article	IF	CITATIONS
19	Effect of Additives on the Selectivity and Reactivity of Enzymes. Chemical Record, 2017, 17, 90-121.	5.8	15
20	One-pot bienzymatic cascade combining decarboxylative aldol reaction and kinetic resolution to synthesize chiral β-hydroxy ketone derivatives. RSC Advances, 2016, 6, 76829-76837.	3.6	15
21	Antitumor gemcitabine conjugated micelles from amphiphilic comb-like random copolymers. Colloids and Surfaces B: Biointerfaces, 2016, 146, 707-715.	5.0	9
22	Solvent-Free Lipase-Catalyzed Synthesis: Unique Properties of Enantiopure <scp>d</scp> - and <scp>l</scp> - Polyaspartates and Their Complexation. Biomacromolecules, 2016, 17, 362-370.	5.4	13
23	Mapping inhibitor response to the in-frame deletions, insertions and duplications of epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Journal of Receptor and Signal Transduction Research, 2016, 36, 37-44.	2.5	8
24	A Single Lipaseâ€Catalysed Oneâ€Pot Protocol Combining Aminolysis Resolution and Azaâ€Michael Addition: An Easy and Efficient Way to Synthesise βâ€Amino Acid Esters. European Journal of Organic Chemistry, 2015, 2015, 5393-5401.	2.4	18
25	Novel supramolecular assemblies of repulsive DNA–anionic porphyrin complexes based on covalently modified multi-walled carbon nanotubes and cyclodextrins. RSC Advances, 2015, 5, 21153-21160.	3.6	8
26	Insight into molecular mechanism underlying the transesterification catalysed by penicillin G amidase (PGA) using a combination protocol of experimental assay and theoretical analysis. Molecular Simulation, 2014, 40, 1125-1130.	2.0	0
27	Lipaseâ€Catalyzed Doubly Enantioselective Ringâ€Opening Resolution between Alcohols and Lactones: Synthesis of Chiral Hydroxyl Esters with Two Stereogenic Centers. ChemCatChem, 2014, 6, 3448-3454.	3.7	8
28	Oneâ€Pot Synthesis of Spirooxazino Derivatives <i>via</i> Enzyme―Initiated Multicomponent Reactions. Advanced Synthesis and Catalysis, 2014, 356, 999-1005.	4.3	35
29	Enzymatic enantioselective aldol reactions of isatin derivatives with cyclic ketones under solvent-free conditions. Biochimie, 2014, 101, 156-160.	2.6	30
30	Dynamic Double Kinetic Resolution of Amines and Alcohols under the Cocatalysis of Raney Nickel/ <i>Candida antarctica</i> Lipase B: From Concept to Application. European Journal of Organic Chemistry, 2014, 2014, 2917-2923.	2.4	14
31	Candida antarctica lipase B-catalyzed synthesis of polyesters: starting from ketones via a tandem BVO/ROP process. RSC Advances, 2014, 4, 8533.	3.6	14
32	Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Mikrochimica Acta, 2014, 181, 231-238.	5.0	23
33	Stereoselective Transformations of αâ€Trifluoromethylated Ketoximes to Optically Active Amines by Enzyme–Nanometal Cocatalysis: Synthesis of (<i>S</i>)â€Inhibitor of Phenylethanolamine Nâ€Methyltransferase. ChemCatChem, 2014, 6, 2129-2133.	3.7	14
34	Fabrication of sizeâ€controllable mPEGâ€decorated microparticles conjugating optically active ketoprofen based on selfâ€assembly of amphiphilic random copolymers. Journal of Applied Polymer Science, 2013, 127, 3242-3248.	2.6	4
35	<i>L</i> â€Lysine/imidazoleâ€catalyzed Multicomponent Cascade Reaction: Facile Synthesis of C5â€substituted 3â€Methylcyclohexâ€2â€enones. Chinese Journal of Chemistry, 2013, 31, 997-1002.	4.9	8
36	Multifunctional poly(amine-ester)-type hyperbranched polymers: lipase-catalyzed green synthesis, characterization, biocompatibility, drug loading and anticancer activity. Polymer Chemistry, 2013, 4, 3480.	3.9	22

#	Article	IF	CITATIONS
37	Lipase/Acetamide atalyzed Carbon arbon Bond Formations: A Mechanistic View. Advanced Synthesis and Catalysis, 2013, 355, 864-868.	4.3	24
38	Chemoenzymatic dynamic kinetic resolution of α-trifluoromethylated amines: influence of substitutions on the reversed stereoselectivity. RSC Advances, 2013, 3, 9820.	3.6	17
39	Lipaseâ€catalyzed synthesis of polymeric prodrugs of nonsteroidal antiâ€inflammatory drugs. Journal of Applied Polymer Science, 2013, 128, 3271-3279.	2.6	9
40	Tandem dynamic kinetic resolution and enzymatic polycondensation to synthesize mPEGâ€functionalized poly(amineâ€ <i>co</i> â€ester)â€type chiral prodrugs. Journal of Polymer Science Part A, 2013, 51, 2049-2057.	2.3	10
41	Imidazoleâ€catalyzed Threeâ€component Cascade Reaction for the Facile Synthesis of Highly Substituted 3,4â€Dihydropyridinâ€2â€one Derivatives. Chinese Journal of Chemistry, 2012, 30, 2343-2348.	4.9	12
42	A Nonenzymatic Hydrogen Peroxide Sensor Based on Silver Nanowires and Chitosan Film. Electroanalysis, 2012, 24, 1771-1777.	2.9	11
43	A novel immunosensor based on an alternate strategy of electrodeposition and self-assembly. Biosensors and Bioelectronics, 2012, 35, 277-283.	10.1	34
44	Synthesis and characterization of saccharideâ€functionalized polymer–gemcitabine conjugates based on chemoenzymatic selective strategy. Journal of Applied Polymer Science, 2012, 124, 1840-1847.	2.6	5
45	Enzymatic synthesis of optical pure β-nitroalcohols by combining d-aminoacylase-catalyzed nitroaldol reaction and immobilized lipase PS-catalyzed kinetic resolution. Green Chemistry, 2011, 13, 2359.	9.0	39
46	A Combination of Computational and Experimental Approaches to Investigate the Binding Behavior of <i>B.sub</i> Lipase A Mutants with Substrate <i>p</i> NPP. Molecular Informatics, 2011, 30, 359-367.	2.5	11
47	Catalystâ€free Multicomponent Synthesis of <i>β</i> â€Mercapto Diketones in Water. Chinese Journal of Chemistry, 2011, 29, 1856-1862.	4.9	13
48	One pot cascade synthesis of substituted 1,2,4-triazol-3-ones. Science Bulletin, 2010, 55, 2879-2884.	1.7	0
49	A Simple Layerâ€byâ€Layer Assembly Strategy for a Reagentless Biosensor Based on a Nanocomposite of Methylene Blueâ€Multiwalled Carbon Nanotubes. Electroanalysis, 2010, 22, 277-285.	2.9	18
50	Synthesis and Characterization of Optically Active Macromolecular Prodrugs with Chemo-Enzymatic Protocol. , 2009, , .		0
51	Promiscuous Zincâ€Dependent Acylaseâ€Mediated Oneâ€Pot Synthesis of Monosaccharideâ€Containing Pyrimidine Derivatives in Organic Medium. Advanced Synthesis and Catalysis, 2009, 351, 1833-1841.	4.3	22
52	Design and <i>in vitro</i> Biodegradation of Novel Hepatocyteâ€Targetable (Galactose) Tj ETQq0 0 0 rgBT /Over 2009, 210, 1052-1060.	lock 10 Tf 2.2	50 147 Td (9
53	Novel designed polymer–acyclovir conjugates with linker ontrolled drug release and hepatoma cell targeting. Journal of Polymer Science Part A, 2008, 46, 117-126.	2.3	17
54	Novel hepatomaâ€ŧargeting micelles based on chemoenzymatic synthesis and selfâ€assembly of galactoseâ€functionalized ribavirinâ€containing amphiphilic random copolymer. Journal of Polymer Science Part A, 2008, 46, 2734-2744.	2.3	24

#	Article	IF	CITATIONS
55	Basic Law Controlling the Growth Regime of Layerâ€by‣ayer Assembled Polyelectrolyte Multilayers. Macromolecular Chemistry and Physics, 2008, 209, 175-183.	2.2	15
56	Immobilization of penicillin G acylase on a composite carrier with a biocompatible microenvironment of chitosan. Journal of Chemical Technology and Biotechnology, 2008, 83, 1710-1716.	3.2	7
57	Chemoenzymatic synthesis, characterization, and controlled release of functional polymeric prodrugs with acyclovir as pendant. Journal of Applied Polymer Science, 2008, 108, 431-437.	2.6	6
58	<i>Candida antarctica</i> Lipase B (CALâ€B)â€Catalyzed Carbonâ€Sulfur Bond Addition and Controllable Selectivity in Organic Media. Advanced Synthesis and Catalysis, 2008, 350, 1959-1962.	4.3	70
59	A green protocol for synthesis of benzo-fused N,S-, N,O- and N,N-heterocycles in water. Green Chemistry, 2008, 10, 972.	9.0	52
60	A Basic Ionic Liquid as Catalyst and Reaction Medium: A Rapid and Simple Procedure for Aza-Michael Addition Reactions. European Journal of Organic Chemistry, 2007, 2007, 1798-1802.	2.4	61
61	A Facile Method for Preparation of Polymerizable, Optically Active Ketoprofen Prodrug by Irreversible Lipase-catalysed Resolution. World Journal of Microbiology and Biotechnology, 2006, 22, 723-727.	3.6	6
62	Promiscuous Acylases-Catalyzed Markovnikov Addition of N-Heterocycles to Vinyl Esters in Organic Media. Advanced Synthesis and Catalysis, 2006, 348, 487-492.	4.3	73
63	Graft copolymerization of water-soluble monomers containing quaternary ammonium group on poly(vinyl alcohol) using ceric ions. Journal of Applied Polymer Science, 2005, 97, 2186-2191.	2.6	19
64	Title is missing!. Biotechnology Letters, 2001, 23, 1981-1985.	2.2	15