List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8887419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 1992, 28, 151-179.	1.4	724
2	A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 2017, 50, 84-134.	6.0	474
3	The Timing and Duration of the Delamerian Orogeny: Correlation with the Ross Orogen and Implications for Gondwana Assembly. Journal of Geology, 2006, 114, 189-210.	1.4	313
4	Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology, 1992, 20, 931.	4.4	230
5	Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica Et Cosmochimica Acta, 2002, 66, 2771-2789.	3.9	210
6	U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contributions To Mineralogy and Petrology, 2001, 142, 43-57.	3.1	160
7	Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania. Contributions To Mineralogy and Petrology, 2012, 164, 757-772.	3.1	157
8	Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contributions To Mineralogy and Petrology, 1992, 109, 479-493.	3.1	148
9	Geochemistry of quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas. Journal of Volcanology and Geothermal Research, 1987, 32, 137-160.	2.1	147
10	Field setting, mineralogy, chemistry, and genesis of arc picrites, New Georgia, Solomon Islands. Contributions To Mineralogy and Petrology, 1984, 88, 386-402.	3.1	134
11	Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth and Planetary Science Letters, 2000, 183, 107-120.	4.4	131
12	Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contributions To Mineralogy and Petrology, 1990, 105, 585-601.	3.1	126
13	Sm-Nd isotopic evidence for the provenance of sediments from the Adelaide Fold Belt and southeastern Australia with implications for episodic crustal addition. Geochimica Et Cosmochimica Acta, 1993, 57, 1837-1856.	3.9	116
14	Ediacaran terrane accretion within the Arabian–Nubian Shield. Gondwana Research, 2012, 21, 341-352.	6.0	112
15	U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia. Earth and Planetary Science Letters, 2007, 261, 517-533.	4.4	111
16	Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos, 2015, 212-215, 32-44.	1.4	107
17	Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U–Pb and Hf isotopes. Earth and Planetary Science Letters, 2014, 408, 207-225.	4.4	106
18	Iron isotope systematics in planetary reservoirs. Earth and Planetary Science Letters, 2016, 452, 295-308.	4.4	99

#	Article	IF	CITATIONS
19	Granite production in the Delamerian Orogen, South Australia. Journal of the Geological Society, 2002, 159, 557-575.	2.1	95
20	Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India. Bulletin of the Geological Society of America, 2014, 126, 791-811.	3.3	92
21	Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos, 2012, 148, 98-111.	1.4	91
22	The petrology and tectonic setting of Quaternary—Recent volcanic centres of Lombok and Sumbawa, Sunda arc. Chemical Geology, 1980, 30, 201-226.	3.3	88
23	Geochemistry and geochronology of the Rathjen Gneiss: Implications for the early tectonic evolution of the Delamerian Orogen. Australian Journal of Earth Sciences, 1999, 46, 377-389.	1.0	88
24	Cryogenian (â^1⁄4830Ma) mafic magmatism and metamorphism in the northern Madurai Block, southern India: A magmatic link between Sri Lanka and Madagascar?. Journal of Asian Earth Sciences, 2011, 42, 223-233.	2.3	88
25	The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc. Contributions To Mineralogy and Petrology, 1988, 98, 374-389.	3.1	86
26	Mesoproterozoic plumeâ€modified orogenesis in eastern Precambrian Australia. Tectonics, 2009, 28, .	2.8	81
27	U–Pb ages from the Harts Range, central Australia: evidence for early Ordovician extension and constraints on Carboniferous metamorphism. Journal of the Geological Society, 1999, 156, 715-730.	2.1	75
28	Spatial and temporal isotopic domains of contrasting igneous suites in Western and Northern Sulawesi, Indonesia. Chemical Geology, 2003, 199, 243-276.	3.3	66
29	Temporal changes in arc magma geochemistry, northern Sulawesi, Indonesia. Earth and Planetary Science Letters, 1998, 163, 381-398.	4.4	65
30	A newly defined Late Ordovician magmaticâ€ŧhermal event in the Mt Painter Province, northern Flinders Ranges, South Australia. Australian Journal of Earth Sciences, 2003, 50, 611-631.	1.0	64
31	Geochemical evolution of lithospheric mantle beneath S.E. South Australia. Chemical Geology, 2002, 182, 663-695.	3.3	62
32	A Neoproterozoic flood basalt province in southern-central Australia: geochemical and Nd isotope evidence from basin fill. Precambrian Research, 2000, 100, 213-234.	2.7	60
33	The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India. Tectonics, 2015, 34, 820-857.	2.8	60
34	The Dodecanese Province, SE Aegean: A model for tectonic control on potassic magmatism. Lithos, 1992, 28, 241-260.	1.4	59
35	Sr-isotopic evidence for Late Neoproterozoic rifting in the Adelaide Geosyncline at 586 Ma: implications for a Cu ore forming fluid flux. Precambrian Research, 2001, 106, 291-308.	2.7	59
36	Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: A case study from the Renison Sn–W deposit, Tasmania. Geochimica Et Cosmochimica Acta, 2015, 150, 285-298.	3.9	58

#	Article	IF	CITATIONS
37	Genesis of the Tonian Imorona–Itsindro magmatic Suite in central Madagascar: Insights from U–Pb, oxygen and hafnium isotopes in zircon. Precambrian Research, 2016, 281, 312-337.	2.7	56
38	Deep mantle diamonds from South Australia: A record of Pacific subduction at the Gondwanan margin. Geology, 2009, 37, 43-46.	4.4	55
39	Subducted upper and lower continental crust contributes to magmatism in the collision sector of the Sunda-Banda arc, Indonesia. Geology, 2004, 32, 41.	4.4	54
40	Australia and Indonesia in collision: geochemical sources of magmatism. Journal of Volcanology and Geothermal Research, 2005, 140, 25-47.	2.1	54
41	The Sandstone-Hosted Beverley Uranium Deposit, Lake Frome Basin, South Australia: Mineralogy, Geochemistry, and a Time-Constrained Model for Its Genesis. Economic Geology, 2011, 106, 835-867.	3.8	54
42	Controls on the iron isotopic composition of global arc magmas. Earth and Planetary Science Letters, 2018, 494, 190-201.	4.4	53
43	Origin of Geochemical Variability by Arc-Continent Collision in the Biru Area, Southern Sulawesi (Indonesia). Journal of Petrology, 2002, 43, 581-606.	2.8	44
44	The petrology of Tambora volcano, Indonesia: A model for the 1815 eruption. Journal of Volcanology and Geothermal Research, 1986, 27, 1-41.	2.1	43
45	Sources for magmatism in Central Sulawesi: geochemical and Sr–Nd–Pb isotopic constraints. Chemical Geology, 1999, 156, 67-93.	3.3	43
46	The petrology and geochemistry of granitic gneisses from the East Arunta inlier, central Australia: implications for Proterozoic crustal development. Precambrian Research, 1988, 40-41, 233-259.	2.7	42
47	Grenville-age magmatism at the South Tasman Rise (Australia): A new piercing point for the reconstruction of Rodinia. Geology, 2005, 33, 769.	4.4	42
48	Granite genesis and the mechanics of convergent orogenic belts with application to the southern Adelaide Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83, 83-93.	0.3	40
49	The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): Mineral and melt inclusion evidence. Chemical Geology, 2007, 240, 260-279.	3.3	40
50	U-Pb zircon crystallization age of the Muslim Bagh ophiolite: Enigmatic remains of an extensive pre-Himalayan arc. Geology, 2012, 40, 1099-1102.	4.4	40
51	Metamorphic events in the eastern Arunta Inlier, Part 2. Nd_Sr_Ar isotopic constraints. Precambrian Research, 1995, 71, 207-227.	2.7	39
52	Geochemical and geochronological constraints on the Glenelg River Complex, western Victoria. Australian Journal of Earth Sciences, 1993, 40, 275-292.	1.0	38
53	Age and hafnium isotopic evolution of the Didesa and Kemashi Domains, western Ethiopia. Precambrian Research, 2015, 270, 267-284.	2.7	38
54	Magma mingling in late-Delamerian A-type granites at Mannum, South Australia. Mineralogy and Petrology, 1996, 56, 147-169.	1.1	37

#	Article	IF	CITATIONS
55	Geochemical response to varying tectonic settings: an example from southern Sulawesi (Indonesia). Geochimica Et Cosmochimica Acta, 1999, 63, 1155-1172.	3.9	37
56	Some causes and consequences of highâ€ŧemperature, lowâ€pressure metamorphism in the eastern Mt Lofty Ranges, South Australia. Australian Journal of Earth Sciences, 1995, 42, 233-240.	1.0	33
57	Distribution, chronology and causes of Cretaceous – Cenozoic magmatism along the magma-poor rifted southern Australian margin: Links between mantle melting and basin formation. Marine and Petroleum Geology, 2016, 73, 271-298.	3.3	33
58	Dynamics of oceanic iron prior to the Great Oxygenation Event. Earth and Planetary Science Letters, 2019, 506, 360-370.	4.4	31
59	Evolving Marginal Terranes During Neoproterozoic Supercontinent Reorganization: Constraints From the Bemarivo Domain in Northern Madagascar. Tectonics, 2019, 38, 2019-2035.	2.8	29
60	The Cu Stockwork and Massive Sulfide Ore of the Feitais Volcanic-Hosted Massive Sulfide Deposit, Aljustrel, Iberian Pyrite Belt, Portugal: A Mineralogical, Fluid Inclusion, and Isotopic Investigation. Economic Geology, 2008, 103, 241-267.	3.8	28
61	Isotopic and geochemical characterisation of the Cambrian Kanmantoo Group, South Australia: implications for stratigraphy and provenance. Australian Journal of Earth Sciences, 2009, 56, 1095-1110.	1.0	28
62	Contrasting Sr and Nd isotopic behaviour during magma mingling; new insights from the Mannum A-type granite. Lithos, 2011, 126, 135-146.	1.4	28
63	Tonian Arc Magmatism in Central Madagascar: The Petrogenesis of the Imorona-Itsindro Suite. Journal of Geology, 2017, 125, 271-297.	1.4	28
64	The origin of fibrous veins: constraints from geochemistry. Geological Society Special Publication, 2002, 200, 103-118.	1.3	27
65	Cambro-Ordovician magmatism in the Delamerian orogeny: Implications for tectonic development of the southern Gondwanan margin. Gondwana Research, 2020, 81, 490-521.	6.0	27
66	Geochemical and Isotopic Systematics of Eastern Sunda Arc Volcanics: Implications for Mantle Sources and Mantle Mixing Processes. Developments in Geotectonics, 1986, 21, 159-189.	0.3	26
67	Continentalca1.7–Â1.69ÂGa Fe-rich metatholeiites in the Curnamona Province, Australia: a record of melting of a heterogeneous, subduction-modified lithospheric mantle. Australian Journal of Earth Sciences, 2006, 53, 501-519.	1.0	26
68	Coexisting High- and Low-Calcium Melts Identified by Mineral and Melt Inclusion Studies of a Subduction-Influenced Syn-collisional Magma from South Sulawesi, Indonesia. Journal of Petrology, 2006, 47, 2433-2462.	2.8	26
69	A unifying model for the Torridon Group (early Neoproterozoic), NW Scotland: Product of post-Grenvillian extensional collapse. Earth-Science Reviews, 2011, 108, 34-49.	9.1	25
70	New insights into the magmatic plumbing system of the South Australian Quaternary Basalt province from 3D seismic and geochemical data. Australian Journal of Earth Sciences, 2013, 60, 797-817.	1.0	25
71	Probing into Thailand's basement: New insights from U–Pb geochronology, Sr, Sm–Nd, Pb and Lu–Hf isotopic systems from granitoids. Lithos, 2018, 320-321, 332-354.	1.4	25
72	Genesis and Preservation of a Uranium-Rich Paleozoic Epithermal System with a Surface Expression (Northern Flinders Ranges, South Australia): Radiogenic Heat Driving Regional Hydrothermal Circulation over Geological Timescales. Astrobiology, 2011, 11, 499-508.	3.0	24

#	Article	IF	CITATIONS
73	Iron isotope variability in ocean floor lavas and mantle sources in the Lau back-arc basin. Geochimica Et Cosmochimica Acta, 2018, 241, 150-163.	3.9	23
74	Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event. Communications Earth & Environment, 2021, 2, .	6.8	23
75	Towards unravelling the Mozambique Ocean conundrum using a triumvirate of zircon isotopic proxies on the Ambatolampy Group, central Madagascar. Tectonophysics, 2015, 662, 167-182.	2.2	22
76	Are granites and granulites consanguineous?. Geology, 2015, 43, 991-994.	4.4	22
77	Origin and tectonic evolution of the NE basement of Oman: a window into the Neoproterozoic accretionary growth of India?. Geological Magazine, 2018, 155, 1150-1174.	1.5	22
78	Banded amphibolites of the harts range meta-igneous complex, central Australia: an early proterozoic basalt-tonalite suite. Precambrian Research, 1985, 28, 223-252.	2.7	21
79	Geochronological and geochemical studies of mafic and intermediate dykes from the Khao Khwang Fold–Thrust Belt: Implications for petrogenesis and tectonic evolution. Gondwana Research, 2016, 36, 124-141.	6.0	21
80	The geochemistry and crustal origin of the Archaean acid intrusive rocks of the Agnew Dome, Lawlers, western Australia. Precambrian Research, 1984, 23, 247-271.	2.7	20
81	Rb/Sr dating of differentiated cleavage from the upper Adelaidean metasediments at Hallett Cove, southern Adelaide fold belt. Journal of Structural Geology, 1994, 16, 1233-1241.	2.3	20
82	New U Pb, Hf and O isotope constraints on the provenance of sediments from the Adelaide Rift Complex – Documenting the key Neoproterozoic to early Cambrian succession. Gondwana Research, 2020, 83, 248-278.	6.0	20
83	THE ROLE OF THE MANTLE IN THE GENESIS OF TIN DEPOSITS AND TIN PROVINCES OF EASTERN AUSTRALIA. Economic Geology, 2011, 106, 297-305.	3.8	19
84	Iron-isotope systematics from the Batu Hijau Cu-Au deposit, Sumbawa, Indonesia. Chemical Geology, 2017, 466, 159-172.	3.3	19
85	The diamonds of South Australia. Lithos, 2009, 112, 806-821.	1.4	18
86	Zircon Geochemical and Geochronological Constraints on Contaminated and Enriched Mantle Sources beneath the Arabian Shield, Saudi Arabia. Journal of Geology, 2015, 123, 463-489.	1.4	18
87	High Fe–Ti mafic magmatism and tectonic setting of the Paleoproterozoic Broken Hill Block, NSW, Australia. Precambrian Research, 2007, 156, 55-84.	2.7	17
88	Structural evolution and medium-temperature thermochronology of central Madagascar: implications for Gondwana amalgamation. Journal of the Geological Society, 2020, 177, 784-798.	2.1	17
89	Unravelling the Neoproterozoic accretionary history of Oman, using an array of isotopic systems in zircon. Journal of the Geological Society, 2020, 177, 357-378.	2.1	16
90	Cryogenian magmatism along the north-western margin of Laurentia: Plume or rift?. Precambrian Research, 2018, 319, 144-157.	2.7	15

#	Article	IF	CITATIONS
91	Stenian–Tonian arc magmatism in west–central Madagascar: the genesis of the Dabolava Suite. Journal of the Geological Society, 2018, 175, 111-129.	2.1	14
92	Late Neoproterozoic adakitic magmatism of the eastern Arabian Nubian Shield. Geoscience Frontiers, 2019, 10, 1981-1992.	8.4	14
93	Geochronology and Hf isotopes of the bimodal mafic–felsic high heat producing igneous suite from Mt Painter Province, South Australia. Gondwana Research, 2013, 24, 1067-1079.	6.0	13
94	Exhumation history of the Peake and Denison Inliers: insights from low-temperature thermochronology. Australian Journal of Earth Sciences, 2016, 63, 805-820.	1.0	13
95	The origin of the ultramafic rocks of the Tulu Dimtu Belt, western Ethiopia – do they represent remnants of the Mozambique Ocean?. Geological Magazine, 2019, 156, 62-82.	1.5	13
96	Garnet Peridotite Xenoliths and Xenocrysts from the Monk Hill Kimberlite, South Australia: Insights into the Lithospheric Mantle beneath the Adelaide Fold Belt. Journal of Petrology, 2011, 52, 1965-1986.	2.8	12
97	A re-evaluation of the Kumta Suture in western peninsular India and its extension into Madagascar. Journal of Asian Earth Sciences, 2018, 157, 317-328.	2.3	11
98	Granite genesis and the mechanics of convergent orogenic belts with application to the southern Adelaide Fold Belt. Special Paper of the Geological Society of America, 1992, , 83-94.	0.5	10
99	Amphibolites from the Entia Gneiss Complex, Eastern Arunta inlier: Geochemical evidence for a proterozoic transition from extensional to compressional tectonics. Precambrian Research, 1988, 38, 235-255.	2.7	9
100	Pb—Pb zircon evaporation date for the Charleston Granite, South Australia: Comparisons with other zircon geochronology techniques. Australian Journal of Earth Sciences, 1996, 43, 133-137.	1.0	9
101	Petrogenesis of the Late Cretaceous Tholeiitic Volcanism and Oceanic Island Arc Affinity of the Chagai Arc, Western Pakistan. Acta Geologica Sinica, 2017, 91, 1248-1263.	1.4	9
102	Age and hafnium isotope evolution of Sudanese Butana and Chad illuminates the Stenian to Ediacaran evolution of the south and east Sahara. Precambrian Research, 2021, 362, 106323.	2.7	9
103	dating of differentiated cleavage from the upper Adelaidean metasediments at Hallett Cove, southern Adelaide fold belt: Reply. Journal of Structural Geology, 1995, 17, 1801-1803.	2.3	8
104	Source and significance of the felsic magmatism in the Paleoproterozoic to Mesoproterozoic Broken Hill Block, New South Wales. Australian Journal of Earth Sciences, 2008, 55, 531-553.	1.0	8
105	Late syn- to post-collisional magmatism in Madagascar: The genesis of the Ambalavao and Maevarano Suites. Geoscience Frontiers, 2019, 10, 2063-2084.	8.4	8
106	The Entire anorthositic gneiss, eastern Arunta Inlier, Central Australia: Geochemistry and petrogenesis. Australian Journal of Earth Sciences, 1985, 32, 449-465.	1.0	7
107	A critical evaluation of copper isotopes in Precambrian Iron Formations as a paleoceanographic proxy. Geochimica Et Cosmochimica Acta, 2019, 264, 130-140.	3.9	7
108	Tectonic setting of cambrian rifting, volcanism and ophiolite formation in western tasmania. Tectonophysics, 1987, 140, 275-295.	2.2	6

#	Article	IF	CITATIONS
109	A reappraisal of the evolution of the palaeo-Pacific margin of Gondwana from the Pb and Os isotope systematics of igneous rocks from the southern Adelaide fold belt, South Australia. Gondwana Research, 2017, 45, 152-162.	6.0	6
110	Data analysis of the U–Pb geochronology and Lu–Hf system in zircon and whole-rock Sr, Sm–Nd and Pb isotopic systems for the granitoids of Thailand. Data in Brief, 2018, 21, 1794-1809.	1.0	6
111	Proterozoic Basin Evolution and Tectonic Geography of Madagascar: Implications for an East Africa Connection During the Paleoproterozoic. Tectonics, 2021, 40, e2020TC006498.	2.8	6
112	Age and composition of dykes emplaced before and during the opening of the Tasman Sea—source implications. Australian Journal of Earth Sciences, 2019, 66, 1129-1144.	1.0	5
113	The petrology of kimberlites from South Australia: Linking olivine macrocrystic and micaceous kimberlites. Journal of Volcanology and Geothermal Research, 2019, 373, 68-96.	2.1	4
114	Geochemical constraints on Cenozoic intraplate magmatism and their relation to Jurassic dolerites in Tasmania, using Sr-Nd-Pb isotopes. Chemical Geology, 2019, 506, 225-273.	3.3	4
115	Reply: A unifying model for the Torridon Group (early Neoproterozoic), NW Scotland: Product of post-Grenvillian extensional collapse. Earth-Science Reviews, 2012, 111, 86-89.	9.1	3
116	Reply to comments by S.Self and J.A. Wolff on "The petrology of Tambora volcano. Indonesia: A model for the 1815 eruption― Journal of Volcanology and Geothermal Research, 1987, 31, 167-170.	2.1	1
117	Geochronology in South Australia. Australian Journal of Earth Sciences, 2008, 55, 745-751.	1.0	1
118	Geochemistry of an Early Proterozoic Basic Granulite-Gneiss Suite and Petrogenetic Implications, Arunta Inlier, Central Australia. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 1990, 8, 287-326.	0.2	0
119	The mineralogy of the Yaringie Hill meteorite—A new H5 chondrite from South Australia. Meteoritics and Planetary Science, 2009, 44, 1687-1693.	1.6	0
120	Lead and Nd isotopic evidence for a crustal Pb source of the giant Broken Hill Pb–Zn–Ag deposit, New South Wales, Australia. Ore Geology Reviews, 2015, 65, 228-244.	2.7	0
121	The Origin of Meso-Cenozoic Offshore Magmatism Along the Australian Southeastern Continental Margin: New Insights From Seismic and Geochemical Data. , 2015, , .		0