
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8887373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	13.9	936
2	Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science, 2021, 373, 1372-1377.	6.0	459
3	Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature, 2014, 514, 642-645.	13.7	308
4	Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants. New England Journal of Medicine, 2021, 385, 664-666.	13.9	297
5	A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature, 2016, 533, 105-109.	13.7	281
6	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> . Journal of Virology, 2014, 88, 12669-12682.	1.5	248
7	Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.	6.0	225
8	Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Science Translational Medicine, 2014, 6, 243ra88.	5.8	222
9	Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clinical and Experimental Immunology, 2015, 182, 289-301.	1.1	222
10	Early Events in Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infection and Immunity, 2006, 74, 3790-3803.	1.0	215
11	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	1.5	205
12	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373,	6.0	174
13	Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques. Nature Medicine, 2016, 22, 362-368.	15.2	163
14	Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies. Science Translational Medicine, 2017, 9, .	5.8	135
15	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	2.8	131
16	Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science, 2022, 376, eabn8897.	6.0	119
17	Human Herpesvirus 8 Infects and Replicates in Primary Cultures of Activated B Lymphocytes through DC-SIGN. Journal of Virology, 2008, 82, 4793-4806.	1.5	116
18	Broadly neutralizing antibodies target the coronavirus fusion peptide. Science, 2022, 377, 728-735.	6.0	111

#	Article	IF	CITATIONS
19	Human Lymphatic Endothelial Cells Express Multiple Functional TLRs. Journal of Immunology, 2008, 180, 3399-3405.	0.4	98
20	Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term Protection against Simian/Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 5895-5903.	1.5	92
21	A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Scientific Reports, 2020, 10, 18149.	1.6	90
22	Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Communications, 2015, 6, 8447.	5.8	88
23	A Meta-analysis of Passive Immunization Studies Shows that Serum-Neutralizing Antibody Titer Associates with Protection against SHIV Challenge. Cell Host and Microbe, 2019, 26, 336-346.e3.	5.1	88
24	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Science Translational Medicine, 2017, 9, .	5.8	87
25	Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization. Journal of Virology, 2015, 89, 12501-12512.	1.5	83
26	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	5.8	79
27	Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. Journal of Virology, 2016, 90, 1321-1332.	1.5	68
28	Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV,the, 2019, 6, e667-e679.	2.1	67
29	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	1.5	62
30	Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18754-18763.	3.3	53
31	Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.	2.9	52
32	Accumulation of follicular CD8+ T cells in pathogenic SIV infection. Journal of Clinical Investigation, 2018, 128, 2089-2103.	3.9	43
33	Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2017, 91, .	1.5	40
34	Protective Efficacy of Broadly Neutralizing Antibodies with Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in Rhesus Monkeys. Journal of Virology, 2017, 91, .	1.5	38
35	Single-dose bNAb cocktail or abbreviated ART post-exposure regimens achieve tight SHIV control without adaptive immunity. Nature Communications, 2020, 11, 70.	5.8	37
36	TLR7 agonist, N6-LS and PGT121 delayed viral rebound in SHIV-infected macaques after antiretroviral therapy interruption. PLoS Pathogens, 2021, 17, e1009339.	2.1	32

#	Article	IF	CITATIONS
37	Improvement of antibody functionality by structure-guided paratope engraftment. Nature Communications, 2019, 10, 721.	5.8	27
38	Enhancing durability of CIS43 monoclonal antibody by Fc mutation or AAV delivery for malaria prevention. JCI Insight, 2021, 6, .	2.3	25
39	Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. Journal of Clinical Investigation, 2020, 130, 3299-3304.	3.9	24
40	Glycoengineering HIV-1 Env creates â€~supercharged' and â€~hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathogens, 2018, 14, e1007024.	2.1	22
41	Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathogens, 2019, 15, e1007632.	2.1	20
42	Afferent and Efferent Interfaces of Lymph Nodes Are Distinguished by Expression of Lymphatic Endothelial Markers and Chemokines. Lymphatic Research and Biology, 2007, 5, 91-104.	0.5	19
43	Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Reports, 2022, 38, 110199.	2.9	19
44	Bispecific antibodies: Potential immunotherapies for HIV treatment. Methods, 2019, 154, 118-124.	1.9	18
45	Modeling cumulative overall prevention efficacy for the VRC01 phase 2b efficacy trials. Human Vaccines and Immunotherapeutics, 2018, 14, 2116-2127.	1.4	17
46	Delayed vaginal SHIV infection in VRC01 and anti-α4β7 treated rhesus macaques. PLoS Pathogens, 2019, 15, e1007776.	2.1	16
47	Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure, 2022, 30, 1233-1244.e7.	1.6	13
48	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	2.9	12
49	Eliminating antibody polyreactivity through addition of <i>N</i> â€linked glycosylation. Protein Science, 2015, 24, 1019-1030.	3.1	11
50	A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs, 2021, 13, 1946918.	2.6	11
51	Blocking α ₄ β ₇ integrin delays viral rebound in SHIV _{SF162P3} -infected macaques treated with anti-HIV broadly neutralizing antibodies. Science Translational Medicine, 2021, 13, .	5.8	11
52	Anti-HIV-1 Antibodies: An Update. BioDrugs, 2020, 34, 121-132.	2.2	7
53	Improved delivery of broadly neutralizing antibodies by nanocapsules suppresses SHIV infection in the CNS of infant rhesus macaques. PLoS Pathogens, 2021, 17, e1009738.	2.1	7
54	Removal of variable domain <i>N</i> -linked glycosylation as a means to improve the homogeneity of HIV-1 broadly neutralizing antibodies. MAbs, 2020, 12, 1836719.	2.6	4

#	Article	IF	CITATIONS
55	Anatomic Distribution of Intravenously Injected IgG Takes Approximately 1 Week to Achieve Stratum Corneum Saturation in Vaginal Tissues. Journal of Immunology, 2021, 207, 505-511.	0.4	4
56	Concordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent staging. Journal of Clinical Investigation, 2021, 131, .	3.9	1
57	P13-01. Crystal structure and function of a monoclonal antibody against primate CD4 that blocks HIV/SIV infection. Retrovirology, 2009, 6, .	0.9	0
58	P13-07 LB. A human blocking antibody to CCR5 partially protects against lentiviral infection in non-human primates. Retrovirology, 2009, 6, .	0.9	0
59	B-108 Germinal center CD8 T cells can be redirected to eliminate HIV-expressing T follicular helper cells. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 67, 47.	0.9	0