Matjaž DolÅjek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8887305/publications.pdf Version: 2024-02-01

ΜΑΤΙΛΔ3/ ΠΟΙΔ:ΕΚ

#	Article	IF	CITATIONS
1	The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame — a deterministic assessment. Engineering Structures, 2008, 30, 1991-2001.	5.3	281
2	Incremental dynamic analysis with consideration of modeling uncertainties. Earthquake Engineering and Structural Dynamics, 2009, 38, 805-825.	4.4	236
3	Simplified non-linear seismic analysis of infilled reinforced concrete frames. Earthquake Engineering and Structural Dynamics, 2005, 34, 49-66.	4.4	153
4	The sensitivity of seismic response parameters to the uncertain modelling variables of masonry-infilled reinforced concrete frames. Engineering Structures, 2012, 35, 165-177.	5.3	122
5	The impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings. Engineering Structures, 2013, 52, 340-354.	5.3	117
6	Current Challenges and Future Trends in Analytical Fragility and Vulnerability Modeling. Earthquake Spectra, 2019, 35, 1927-1952.	3.1	113
7	SOFT STOREY EFFECTS IN UNIFORMLY INFILLED REINFORCED CONCRETE FRAMES. Journal of Earthquake Engineering, 2001, 5, 1-12.	2.5	94
8	The effect of masonry infills on the seismic response of a four storey reinforced concrete frame—a probabilistic assessment. Engineering Structures, 2008, 30, 3186-3192.	5.3	79
9	A practiceâ€oriented estimation of the failure probability of building structures. Earthquake Engineering and Structural Dynamics, 2012, 41, 531-547.	4.4	70
10	Inelastic spectra for infilled reinforced concrete frames. Earthquake Engineering and Structural Dynamics, 2004, 33, 1395-1416.	4.4	69
11	Mathematical modelling of an infilled RC frame structure based on the results of pseudo-dynamic tests. Earthquake Engineering and Structural Dynamics, 2002, 31, 1215-1230.	4.4	68
12	Seismic fragility functions of industrial precast building classes. Engineering Structures, 2016, 118, 357-370.	5.3	67
13	Development of computing environment for the seismic performance assessment of reinforced concrete frames by using simplified nonlinear models. Bulletin of Earthquake Engineering, 2010, 8, 1309-1329.	4.1	64
14	Progressive Incremental Dynamic Analysis for First-Mode Dominated Structures. Journal of Structural Engineering, 2011, 137, 445-455.	3.4	61
15	Simplified probabilistic seismic performance assessment of plan-asymmetric buildings. Earthquake Engineering and Structural Dynamics, 2007, 36, 2021-2041.	4.4	60
16	Practiceâ€oriented probabilistic seismic performance assessment of infilled frames with consideration of shear failure of columns. Earthquake Engineering and Structural Dynamics, 2013, 42, 1339-1360.	4.4	54
17	Prediction of the median IDA curve by employing a limited number of ground motion records. Earthquake Engineering and Structural Dynamics, 2007, 36, 2401-2421.	4.4	53
18	Envelopeâ€based pushover analysis procedure for the approximate seismic response analysis of buildings. Earthquake Engineering and Structural Dynamics, 2014, 43, 77-96.	4.4	44

Ματιαž DolÅiek

#	Article	IF	CITATIONS
19	Pre- and post-test mathematical modelling of a plan-asymmetric reinforced concrete frame building. Earthquake Engineering and Structural Dynamics, 2006, 35, 1359-1379.	4.4	42
20	Approximate seismic risk assessment of building structures with explicit consideration of uncertainties. Earthquake Engineering and Structural Dynamics, 2014, 43, 1483-1502.	4.4	37
21	Formulation of riskâ€ŧargeted seismic action for the forceâ€based seismic design of structures. Earthquake Engineering and Structural Dynamics, 2019, 48, 1406-1428.	4.4	37
22	Simplified estimation of seismic risk for reinforced concrete buildings with consideration of corrosion over time. Bulletin of Earthquake Engineering, 2011, 9, 1137-1155.	4.1	34
23	Equivalent constant rates for performance-based seismic assessment of ageing structures. Structural Safety, 2011, 33, 8-18.	5.3	32
24	IMâ€based and EDPâ€based decision models for the verification of the seismic collapse safety of buildings. Earthquake Engineering and Structural Dynamics, 2017, 46, 2665-2682.	4.4	32
25	Incorporating intensity bounds for assessing the seismic safety of structures: Does it matter?. Earthquake Engineering and Structural Dynamics, 2014, 43, 717-738.	4.4	31
26	A webâ€based methodology for the prediction of approximate IDA curves. Earthquake Engineering and Structural Dynamics, 2013, 42, 43-60.	4.4	30
27	Riskâ€based seismic design for collapse safety. Earthquake Engineering and Structural Dynamics, 2016, 45, 1451-1471.	4.4	28
28	Risk-Based Multilevel Methodology to Stress Test Critical Infrastructure Systems. Journal of Infrastructure Systems, 2020, 26, 04019035.	1.8	21
29	Simplified method for seismic risk assessment of buildings with consideration of aleatory and epistemic uncertainty. Structure and Infrastructure Engineering, 0, , 1-15.	3.7	20
30	Dispersions for the pushoverâ€based risk assessment of reinforced concrete frames and cantilever walls. Earthquake Engineering and Structural Dynamics, 2016, 45, 2163-2183.	4.4	19
31	Seismic analysis of older and contemporary reinforced concrete frames with the improved fish-bone model. Engineering Structures, 2020, 212, 110514.	5.3	19
32	The importance of ambient and forced vibration measurements for the results of seismic performance assessment of buildings obtained by using a simplified non-linear procedure: case study of an old masonry building. Bulletin of Earthquake Engineering, 2013, 11, 2105-2132.	4.1	18
33	Evaluation of factors influencing the earthquake-resistant design of reinforced concrete frames according to Eurocode 8. Structure and Infrastructure Engineering, 2016, 12, 1323-1341.	3.7	18
34	Pushoverâ€based seismic risk assessment and loss estimation of masonry buildings. Earthquake Engineering and Structural Dynamics, 2020, 49, 567-588.	4.4	17
35	Fragility functions for unreinforced masonry walls made from hollow clay units. Engineering Structures, 2017, 145, 293-304.	5.3	14
36	Seismic risk assessment of liquid overtopping in a steel storage tank equipped with a single deck floating roof. Journal of Loss Prevention in the Process Industries, 2020, 67, 104269.	3.3	14

Ματιαž DolÅiek

#	Article	IF	CITATIONS
37	A closed form solution for seismic risk assessment incorporating intensity bounds. Engineering Structures, 2014, 78, 78-89.	5.3	10
38	Seismic response analysis using characteristic ground motion records for riskâ€based decisionâ€making (3R method). Earthquake Engineering and Structural Dynamics, 2016, 45, 401-420.	4.4	10
39	Fatality risk and its application to the seismic performance assessment of a building. Engineering Structures, 2020, 205, 110108.	5.3	10
40	Fatality risk estimation for industrialized urban areas considering multi-hazard domino effects triggered by earthquakes. Reliability Engineering and System Safety, 2021, 206, 107287.	8.9	9
41	Impact of the type of the target response spectrum for ground motion selection and of the number of ground motions on the pushover-based seismic performance assessment of buildings. Engineering Structures, 2018, 175, 731-742.	5.3	7
42	Simulating Historical Earthquakes in Existing Cities for Fostering Design of Resilient and Sustainable Communities: The Ljubljana Case. Sustainability, 2021, 13, 7624.	3.2	7
43	A Practice-Oriented Approach for Probabilistic Seismic Assessment of Building Structures. Geotechnical, Geological and Earthquake Engineering, 2010, , 225-233.	0.2	7
44	A five-grade grading system for the evaluation and communication of short-term and long-term risk posed by natural hazards. Structural Safety, 2019, 78, 48-62.	5.3	6
45	A simplified risk-targeted decision model for the verification of the seismic performance of critical infrastructure components to the operational limit state. Engineering Structures, 2020, 204, 110019.	5.3	5
46	The Reduced-Degree-of-Freedom Model for Seismic Analysis of Predominantly Plan-Symmetric Reinforced Concrete Wall–Frame Building. Buildings, 2021, 11, 372.	3.1	5
47	A web-based system for the selection of characteristic ground motions. Advances in Engineering Software, 2019, 135, 102688.	3.8	4
48	Seismic Risk Assessment of Reinforced Concrete Frame with Consideration of Aleatory and Epistemic Uncertainty. Procedia Engineering, 2011, 14, 982-988.	1.2	1
49	Pushover-Based Analysis in Performance-Based Seismic Engineering – A View from Europe. Geotechnical, Geological and Earthquake Engineering, 2014, , 265-277.	0.2	1
50	Analytic Fragility and Limit States [P(EDP IM)]: Nonlinear Static Procedures. , 2015, , 94-110.		1
51	Recent Advances in the Research of the Seismic Response of RC Precast Buildings at the University of Ljubljana. Frontiers in Built Environment, 2021, 7, .	2.3	1
52	Seismic Design and Performance Assessment of Frame Buildings Reinforced by Dual-Phase Steel. Applied Sciences (Switzerland), 2021, 11, 4998.	2.5	1
53	Analytic Fragility and Limit States [P(EDP IM)]: Nonlinear Static Procedures. , 2015, , 1-19.		1
54	A Toolbox and Web Application for the Seismic Performance Assessment of Buildings. , 2011, , 233-257.		1

4

#	Article	IF	CITATIONS
55	Simplified Estimation of Seismic Risk for Buildings with Consideration of Structural Ageing. , 2011, , 211-231.		0
56	Innovative Computing Environment for Fast and Accurate Prediction of Approximate IDA Curves. Computational Methods in Applied Sciences (Springer), 2013, , 259-272.	0.3	0
57	Estimation of Scenario-based Liquefaction Probability with Consideration of Ground-motion Randomness. Journal of Earthquake Engineering, 0, , 1-23.	2.5	0