Tao Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8886311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology, 2010, 21, 245701.	1.3	184
2	Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B, 2016, 93, .	1.1	166
3	Thermal transport in graphyne nanoribbons. Physical Review B, 2012, 85, .	1.1	103
4	Complex Low Energy Tetrahedral Polymorphs of Group IV Elements from First Principles. Physical Review Letters, 2018, 121, 175701.	2.9	95
5	Stone-Wales graphene: A two-dimensional carbon semimetal with magic stability. Physical Review B, 2019, 99, .	1.1	95
6	Thermal and thermoelectric properties of monolayer indium triphosphide (InP ₃): a first-principles study. Journal of Materials Chemistry A, 2018, 6, 21532-21541.	5.2	91
7	Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge. Europhysics Letters, 2009, 88, 28002. Competing mechanism driving diverse pressure dependence of thermal conductivity of cmml:math	0.7	75
8	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>X</mml:mi> <mml:mtext>Te</mml:mtext> <td>nl:math><</td> <td>mml:math</td>	nl:math><	mml:math

#	Article	IF	CITATIONS
19	Newly discovered graphyne allotrope with rare and robust Dirac node loop. Nanoscale, 2021, 13, 3564-3571.	2.8	33
20	Five low energy phosphorene allotropes constructed through gene segments recombination. Scientific Reports, 2017, 7, 46431.	1.6	31
21	Intrinsic piezoelectricity of monolayer group IV–V MX2: SiP2, SiAs2, GeP2, and GeAs2. Applied Physics Letters, 2020, 116, .	1.5	30
22	Effect of triangle vacancy on thermal transport in boron nitride nanoribbons. Solid State Communications, 2011, 151, 460-464.	0.9	29
23	First-principles study of thermal transport in nitrogenated holey graphene. Nanotechnology, 2017, 28, 045709.	1.3	29
24	Thermal conductivity of ordered-disordered material: a case study of superionic Ag ₂ Te. Nanotechnology, 2015, 26, 025702.	1.3	27
25	New Two-Dimensional Wide Band Gap Hydrocarbon Insulator by Hydrogenation of a Biphenylene Sheet. Journal of Physical Chemistry Letters, 2021, 12, 8889-8896.	2.1	26
26	The intrinsic thermal transport properties of the biphenylene network and the influence of hydrogenation: a first-principles study. Journal of Materials Chemistry C, 2021, 9, 16945-16951.	2.7	26
27	Bayesian optimization-based design of defect gamma-graphyne nanoribbons with high thermoelectric conversion efficiency. Carbon, 2021, 176, 52-60.	5.4	25
28	Tuning thermal conductance in the twisted graphene and gamma graphyne nanoribbons. Journal of Applied Physics, 2014, 115, .	1.1	23
29	High-Throughput Computation of New Carbon Allotropes with Diverse Hybridization and Ultrahigh Hardness. Crystals, 2021, 11, 783.	1.0	23
30	High-throughput computation of novel ternary B–C–N structures and carbon allotropes with electronic-level insights into superhard materials from machine learning. Journal of Materials Chemistry A, 2021, 9, 27596-27614.	5.2	21
31	Thermoelectric properties of graphene nanoribbons with surface roughness. Applied Physics Letters, 2018, 112, .	1.5	20
32	Tunable photoelectronic properties of hydrogenated-silicene/halogenated-silicene superlattices for water splitting. Journal of Applied Physics, 2020, 127, .	1.1	18
33	Ge3P2: New viable two-dimensional semiconductors with ultrahigh carrier mobility. Applied Surface Science, 2019, 497, 143803.	3.1	17
34	Systematic Enumeration of Lowâ€Energy Graphyne Allotropes Based on a Coordinationâ€Constrained Searching Strategy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000437.	1.2	17
35	First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases. Journal of Applied Physics, 2015, 117,	1.1	16
36	Allotropes of Phosphorus with Remarkable Stability and Intrinsic Piezoelectricity. Physical Review Applied, 2018, 9, .	1.5	16

#	Article	IF	CITATIONS
37	Potential thermoelectric material open framework Si24 from a first-principles study. Journal Physics D: Applied Physics, 2017, 50, 425501.	1.3	15
38	Seebeck effects in a graphene nanoribbon coupled to two ferromagnetic leads. Journal of Applied Physics, 2014, 115, 114305.	1.1	14
39	Enhancing the thermoelectric performance of gamma-graphyne nanoribbons by introducing edge disorder. Physical Chemistry Chemical Physics, 2018, 20, 7173-7179.	1.3	14
40	The thermoelectric properties of monolayer SiP and GeP from first-principles calculations. Journal of Applied Physics, 2019, 126, .	1.1	14
41	Photogalvanicâ€Effectâ€Induced Spinâ€Polarized Current in Defective Silicane with H Vacancies. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000395.	1.2	13
42	First-principles calculations of phonon transport in two-dimensional penta-X2C family. Journal of Applied Physics, 2020, 127, 205106.	1.1	13
43	Optoelectronic properties of type-II SePtTe/InS van der Waals heterojunction. Journal of Applied Physics, 2020, 128, .	1.1	12
44	Electronic properties of disordered bilayer graphene. Solid State Communications, 2010, 150, 2366-2369.	0.9	11
45	Methodology Perspective of Computing Thermal Transport in Low-Dimensional Materials and Nanostructures: The Old and the New. ACS Omega, 2018, 3, 3278-3284.	1.6	11
46	Resonant splitting of phonon transport in periodic T-shaped graphene nanoribbons. Europhysics Letters, 2010, 91, 46006.	0.7	10
47	Thermal transport properties of rolled graphene nanoribbons. Applied Physics Letters, 2013, 103, .	1.5	10
48	Potential thermoelectric candidate monolayer silicon diphosphide (SiP2) from a first-principles calculation. Computational Materials Science, 2021, 188, 110154.	1.4	10
49	SIn ₂ Te/TeIn ₂ Se: a type-II heterojunction as a water-splitting photocatalyst with high solar energy harvesting. Journal of Materials Chemistry C, 2021, 9, 7734-7744.	2.7	10
50	<i>Ab initio</i> prediction of a new allotrope of two-dimensional silicon. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600422.	1.2	9
51	Ballistic thermoelectric properties of nitrogenated holey graphene nanostructures. Journal of Applied Physics, 2017, 122, . Few-Laver < mml:math.xmlns:mml="http://www.w3.org/1998/Math/MathMI" display="inline"	1.1	8
52	overflow="scroll"> <mml:mi>î²</mml:mi> ` - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>w><mml:mi>Sn</mml:mi><mml:mi>Se</mml:mi></mml:mi> with Strong Visible Light Absorbance and Ultrahigh Carrier Mobility. Physical Review Applied, 2020, 13.</mml:math 	1.5	8
53	Notable effect of magnetic order on the phonon transport in semi-hydrogenated graphene. Applied Physics Letters, 2022, 120, .	1.5	8
54	Thermoelectric properties of four typical silicon allotropes. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 085006.	0.8	7

#	Article	IF	CITATIONS
55	Ballistic thermal transport in black and blue phosphorene nanoribbons and in-plane heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1493-1497.	0.9	7
56	Strain effect on phonon transport in open framework Si24: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113870.	1.3	7
57	Type-II lateral SnSe/GeTe heterostructures for solar photovoltaic applications with high efficiency. Nanoscale Advances, 2021, 3, 3643-3649.	2.2	7
58	Doping Induced Abnormal Contraction and Significant Reduction of Lattice Thermal Conductivity of Open Framework Si24. ES Energy & Environments, 2018, , .	0.5	7
59	Unique Arrangement of Atoms Leads to Low Thermal Conductivity: A Comparative Study of Monolayer Mg ₂ C. Journal of Physical Chemistry Letters, 2021, 12, 10353-10358.	2.1	7
60	Enhancement of thermoelectric properties of gamma-graphyne nanoribbons with edge modulation. European Physical Journal B, 2015, 88, 1.	0.6	6
61	First-principles prediction of a low energy edge-reconstruction for zigzag phosphorene nanoribbons. Journal Physics D: Applied Physics, 2017, 50, 065304.	1.3	6
62	Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots. Journal Physics D: Applied Physics, 2016, 49, 135303.	1.3	5
63	Optimizing the thermoelectric performance of graphyne nanotube via applying radial strain. Journal of Applied Physics, 2017, 121, 125112.	1.1	5
64	Excellent properties of type-II van der Waals Janus-XM2X'/MX heterojunctions toward solar cell utilization. Journal Physics D: Applied Physics, 2020, 53, 405101.	1.3	5
65	Effect of hydrogen passivation on the decoupling of graphene on SiC(0001) substrate: First-principles calculations. Scientific Reports, 2017, 7, 8461.	1.6	4
66	2D O-PTI monolayer: a robust large bandgap topological insulator. Journal Physics D: Applied Physics, 2020, 53, 025302.	1.3	4
67	Tunable topologically nontrivial states in newly discovered graphyne allotropes: from Dirac nodal grid to Dirac nodal loop. Nanotechnology, 2021, 32, 485705.	1.3	4
68	Electronic and Spinâ€Dependent Optical Properties of Feâ€Adsorbed Armchair Silicene/Silicane Superlattices. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900494.	1.2	3
69	Quasi-bonding driven abnormal isotropic thermal transport in intrinsically anisotropic nanostructure: a case of study of a phosphorus nanotube array. Nanotechnology, 2020, 31, 095704.	1.3	3
70	Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon*. Chinese Physics B, 2021, 30, 077103.	0.7	3
71	Continuously Tunable Thermal Conductance in Arched Graphene Nanoribbons. Applied Physics Express, 2012, 5, 125103.	1.1	2
72	Improving the thermoelectric properties of carbon nanotubes through introducing graphene nanosprings. Current Applied Physics, 2020, 20, 150-154.	1.1	2

#	Article	IF	CITATIONS
73	Ultra-high thermal conductivities of tetrahedral carbon allotropes with non-simple structures. Physical Chemistry Chemical Physics, 2021, 23, 24550-24556.	1.3	2
74	Resonant splitting in periodic T-shaped photonic waveguides. Journal of Applied Physics, 2012, 112, 033522.	1.1	1
75	The modification of central B/N atom chain on electron transport of graphene nanoribbons. Journal of Applied Physics, 2012, 112, 113713.	1.1	1
76	The thermoelectric performance of dumbbell silicene nanoribbons. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 511-517.	1.0	1
77	Excellent thermoelectric performance of open framework Si24 nanowires from density functional based tight-binding calculation. Journal of Applied Physics, 2020, 128, 215108.	1.1	1
78	Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations*. Chinese Physics B, 2020, 29, 118401.	0.7	1
79	Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 056101.	0.2	1
80	Enhanced and spin-dependent infrared optical response of silicene/silicane superlattices with Cr adsorption. Journal Physics D: Applied Physics, 2021, 54, 405106.	1.3	0
81	KP15: Natural van der Waals material with ultra-low thermal conductivity and excellent thermoelectric performance. Journal of Applied Physics, 2021, 130, 195104.	1.1	0
82	Giant Rashba Spin Splitting in Sb/Bi2Se3/Sb and Sb/Sb2Te3 /Sb Heterojunctions. Journal of Electronic Materials, 0, , .	1.0	0