Turbasu Sengupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8886304/publications.pdf

Version: 2024-02-01

THURASH SENCIEDTA

#	Article	IF	CITATIONS
1	Oxidative addition of the Câ \in "I bond on aluminum nanoclusters. Nanoscale, 2015, 7, 12109-12125.	5.6	16
2	Specificity of Amino Acid–Aluminum Cluster Interaction and Subsequent Oxygen Activation by the above Complex. Journal of Physical Chemistry C, 2018, 122, 28310-28323.	3.1	13
3	Transition Metal Doped Aluminum Clusters: An Account of Spin. Journal of Physical Chemistry C, 2016, 120, 10027-10040.	3.1	11
4	One-Dimensional Silver-Thiolate Cluster-Assembly: Effect of Argentophilic Interactions on Excited-State Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 2154-2159.	4.6	10
5	Developing Efficient Suzuki Cross-Coupling Catalysts by Doping Palladium Clusters with Silver. ACS Catalysis, 2021, 11, 11459-11468.	11.2	9
6	The superatomic state beyond conventional magic numbers: Ligated metal chalcogenide superatoms. Journal of Chemical Physics, 2021, 155, 120901.	3.0	9
7	Account of chemical bonding and enhanced reactivity of vanadium-doped rhodium clusters toward C–H activation: a DFT investigation. Physical Chemistry Chemical Physics, 2019, 21, 9935-9948.	2.8	8
8	A ligand-induced homojunction between aluminum-based superatomic clusters. Nanoscale, 2020, 12, 12046-12056.	5.6	8
9	A mechanistic insight into rhodium-doped gold clusters as a better hydrogenation catalyst. Nanoscale, 2020, 12, 5125-5138.	5.6	6
10	Interfacial magnetism in a fused superatomic cluster [Co ₆ Se ₈ (PEt ₃) ₅] ₂ . Nanoscale, 2021, 13, 15763-15769.	5.6	6
11	A Magnetic Superatomic Dimer with an Intense Internal Electric Dipole Moment. Journal of Physical Chemistry A, 2021, 125, 816-824.	2.5	6
12	Electron Detachment and Subsequent Structural Changes of Water Clusters. Journal of Physical Chemistry A, 2016, 120, 1065-1073.	2.5	5
13	Insight into the structure and bonding of copper(i) iodide clusters and a cluster-based coordination polymer. New Journal of Chemistry, 2019, 43, 16176-16187.	2.8	4
14	Radical attached aluminum nanoclusters: an alternative way of cluster stabilization. Physical Chemistry Chemical Physics, 2016, 18, 21746-21759.	2.8	2
15	Mechanistic Investigation of the Carbon–lodine Bond Activation on the Niobium–Carbon Cluster. ACS Omega, 2017, 2, 5335-5347.	3.5	2
16	Electron transport properties of PAI12-based cluster complexes. Nanoscale Advances, 0, , .	4.6	1
17	Massive dipoles across the metal–semiconductor cluster interface: towards chemically controlled rectification. Physical Chemistry Chemical Physics, 2021, 23, 18975-18982.	2.8	0
18	Superatomic Salts with Controlled Ionicity. Materials Advances, 0, , .	5.4	0