
Susana Muñoz Maniega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/88863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	1.1	696
2	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	9.4	594
3	Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5154-E5163.	3.3	299
4	A General Factor of Brain White Matter Integrity Predicts Information Processing Speed in Healthy Older People. Journal of Neuroscience, 2010, 30, 7569-7574.	1.7	297
5	Lacunar stroke is associated with diffuse blood–brain barrier dysfunction. Annals of Neurology, 2009, 65, 194-202.	2.8	295
6	Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 2012, 17, 1026-1030.	4.1	282
7	White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disorders, 2009, 11, 11-18.	1.1	254
8	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	5.8	250
9	White Matter Tractography in Bipolar Disorder and Schizophrenia. Biological Psychiatry, 2008, 64, 1088-1092.	0.7	237
10	White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiology of Aging, 2015, 36, 909-918.	1.5	224
11	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	7.1	213
12	The effects of a neuregulin 1 variant on white matter density and integrity. Molecular Psychiatry, 2008, 13, 1054-1059.	4.1	190
13	Brain Aging, Cognition in Youth and Old Age and Vascular Disease in the Lothian Birth Cohort 1936: Rationale, Design and Methodology of the Imaging Protocol. International Journal of Stroke, 2011, 6, 547-559.	2.9	188
14	Neuroprotective lifestyles and the aging brain. Neurology, 2012, 79, 1802-1808.	1.5	168
15	Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 644-656.	2.4	147
16	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 2017, 11, 1497-1514.	1.1	144
17	Circulating Inflammatory Markers Are Associated With Magnetic Resonance Imaging-Visible Perivascular Spaces But Not Directly With White Matter Hyperintensities. Stroke, 2014, 45, 605-607.	1.0	113
18	Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiology of Aging, 2012, 33, 510-517.e2.	1.5	104

Susana Muñoz Maniega

#	Article	IF	CITATIONS
19	Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 2014, 19, 555-559.	4.1	104
20	Beyond a bigger brain: Multivariable structural brain imaging and intelligence. Intelligence, 2015, 51, 47-56.	1.6	101
21	Coupled Changes in Brain White Matter Microstructure and Fluid Intelligence in Later Life. Journal of Neuroscience, 2015, 35, 8672-8682.	1.7	97
22	A diffusion tensor MRI study of white matter integrity in subjects at high genetic risk of schizophrenia. Schizophrenia Research, 2008, 106, 132-139.	1.1	96
23	Cerebral small vessel disease genomics and its implications across the lifespan. Nature Communications, 2020, 11, 6285.	5.8	89
24	Close Correlation between Quantitative and Qualitative Assessments of White Matter Lesions. Neuroepidemiology, 2013, 40, 13-22.	1.1	88
25	Impact of small vessel disease in the brain on gait and balance. Scientific Reports, 2017, 7, 41637.	1.6	86
26	Brain white matter damage in aging and cognitive ability in youth and older age. Neurobiology of Aging, 2013, 34, 2740-2747.	1.5	83
27	Brain volumetric changes and cognitive ageing during the eighth decade of life. Human Brain Mapping, 2015, 36, 4910-4925.	1.9	79
28	A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research. European Radiology, 2012, 22, 2295-2303.	2.3	75
29	Brain white matter structure and information processing speed in healthy older age. Brain Structure and Function, 2016, 221, 3223-3235.	1.2	75
30	Estimated maximal and current brain volume predict cognitive ability in old age. Neurobiology of Aging, 2013, 34, 2726-2733.	1.5	73
31	Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2016, 42, 116-123.	1.5	72
32	TractoR : Magnetic Resonance Imaging and Tractography with <i>R</i> . Journal of Statistical Software, 2011, 44, .	1.8	72
33	Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936. European Radiology, 2013, 23, 1084-1092.	2.3	71
34	Temporal evolution of water diffusion parameters is different in grey and white matter in human ischaemic stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1714-1718.	0.9	70
35	Association of allostatic load with brain structure and cognitive ability in later life. Neurobiology of Aging, 2015, 36, 1390-1399.	1.5	67
36	Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke. Brain and Behavior, 2015, 5, e00415.	1.0	65

#	Article	IF	CITATIONS
37	A Comparison of Location of Acute Symptomatic vs. â€~Silent' Small Vessel Lesions. International Journal of Stroke, 2015, 10, 1044-1050.	2.9	59
38	Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2014, 35, 1513.e25-1513.e33.	1.5	58
39	Quantifying the effects of normal ageing on white matter structure using unsupervised tract shape modelling. NeuroImage, 2010, 51, 1-10.	2.1	57
40	Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 264-274.	2.4	55
41	Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. NeuroImage: Clinical, 2020, 25, 102120.	1.4	51
42	Associations between education and brain structure at age 73 years, adjusted for age 11 IQ. Neurology, 2016, 87, 1820-1826.	1.5	46
43	The relationship of anterior thalamic radiation integrity to psychosis risk associated neuregulin-1 variants. Molecular Psychiatry, 2009, 14, 237-238.	4.1	44
44	Brain cortical characteristics of lifetime cognitive ageing. Brain Structure and Function, 2018, 223, 509-518.	1.2	44
45	DNA Methylation and Protein Markers of Chronic Inflammation and Their Associations With Brain and Cognitive Aging. Neurology, 2021, 97, e2340-e2352.	1.5	44
46	Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nature Communications, 2020, 11, 800.	5.8	42
47	Choline and Creatine Are Not Reliable Denominators for Calculating Metabolite Ratios in Acute Ischemic Stroke. Stroke, 2008, 39, 2467-2469.	1.0	41
48	Cognitive abilities, brain white matter hyperintensity volume, and structural network connectivity in older age. Human Brain Mapping, 2018, 39, 622-632.	1.9	41
49	Risk and protective factors for structural brain ageing in the eighth decade of life. Brain Structure and Function, 2017, 222, 3477-3490.	1.2	40
50	Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach. NeuroImage, 2009, 45, 377-385.	2.1	38
51	Personality, health, and brain integrity: The Lothian Birth Cohort Study 1936 Health Psychology, 2014, 33, 1477-1486.	1.3	38
52	A genome-wide search for genetic influences and biological pathways related to the brain's white matter integrity. Neurobiology of Aging, 2012, 33, 1847.e1-1847.e14.	1.5	37
53	White Matter Integrity in the Splenium of the Corpus Callosum is Related to Successful Cognitive Aging and Partly Mediates the Protective Effect of an Ancestral Polymorphism in ADRB2. Behavior Genetics, 2010, 40, 146-156.	1.4	35
54	Progression of White Matter Disease and Cortical Thinning Are Not Related in Older Community-Dwelling Subjects. Stroke, 2016, 47, 410-416.	1.0	35

#	Article	IF	CITATIONS
55	Brain white matter tract integrity and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort, 1936 Neuropsychology, 2013, 27, 595-607.	1.0	34
56	Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Translational Psychiatry, 2019, 9, 248.	2.4	34
57	Genes From a Translational Analysis Support a Multifactorial Nature of White Matter Hyperintensities. Stroke, 2015, 46, 341-347.	1.0	33
58	Brain Peak Width of Skeletonized Mean Diffusivity (PSMD) and Cognitive Function in Later Life. Frontiers in Psychiatry, 2019, 10, 524.	1.3	33
59	Spatial Gradient of Microstructural Changes in Normal-Appearing White Matter in Tracts Affected by White Matter Hyperintensities in Older Age. Frontiers in Neurology, 2019, 10, 784.	1.1	30
60	Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology, 2019, 92, .	1.5	30
61	Alzheimer's Disease Susceptibility Genes APOE and TOMM40, and Hippocampal Volumes in the Lothian Birth Cohort 1936. PLoS ONE, 2013, 8, e80513.	1.1	29
62	Brain white matter integrity and cortisol in older men: the Lothian Birth Cohort 1936. Neurobiology of Aging, 2015, 36, 257-264.	1.5	28
63	Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces. Procedia Computer Science, 2016, 90, 61-67.	1.2	28
64	Neuroticism, depressive symptoms and white-matter integrity in the Lothian Birth Cohort 1936. Psychological Medicine, 2013, 43, 1197-1206.	2.7	27
65	Morphologic, Distributional, Volumetric, and Intensity Characterization of Periventricular Hyperintensities. American Journal of Neuroradiology, 2014, 35, 55-62.	1.2	27
66	Sleep and brain morphological changes in the eighth decade of life. Sleep Medicine, 2020, 65, 152-158.	0.8	27
67	Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing?. Psychoneuroendocrinology, 2015, 62, 129-137.	1.3	26
68	Age-Related Changes of Peak Width Skeletonized Mean Diffusivity (PSMD) Across the Adult Lifespan: A Multi-Cohort Study. Frontiers in Psychiatry, 2020, 11, 342.	1.3	26
69	Brain-wide white matter tract integrity is associated with information processing speed and general intelligence. Molecular Psychiatry, 2012, 17, 955-955.	4.1	24
70	Automatic segmentation of brain white matter and white matter lesions in normal aging: comparison of five multispectral techniques. Magnetic Resonance Imaging, 2012, 30, 222-229.	1.0	24
71	Brain iron deposits and lifespan cognitive ability. Age, 2015, 37, 100.	3.0	24
72	Dietary patterns, cognitive function, and structural neuroimaging measures of brain aging. Experimental Gerontology, 2020, 142, 111117.	1.2	23

Susana Muñoz Maniega

#	Article	IF	CITATIONS
73	Aging-Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life Cognitive Declines. Biological Psychiatry, 2021, 89, 795-806.	0.7	23
74	Quantitative multi-modal MRI of the Hippocampus and cognitive ability in community-dwelling older subjects. Cortex, 2014, 53, 34-44.	1.1	22
75	Brain grey and white matter predictors of verbal ability traits in older age: The Lothian Birth Cohort 1936. NeuroImage, 2017, 156, 394-402.	2.1	21
76	Coupled changes in hippocampal structure and cognitive ability in later life. Brain and Behavior, 2018, 8, e00838.	1.0	21
77	Early life predictors of late life cerebral small vessel disease in four prospective cohort studies. Brain, 2021, 144, 3769-3778.	3.7	21
78	Influence of thickening of the inner skull table on intracranial volume measurement in older people. Magnetic Resonance Imaging, 2013, 31, 918-922.	1.0	20
79	Interaction of APOE e4 and poor glycemic control predicts white matter hyperintensity growth from 73 to 76. Neurobiology of Aging, 2017, 54, 54-58.	1.5	20
80	Blood-based epigenome-wide analyses of cognitive abilities. Genome Biology, 2022, 23, 26.	3.8	20
81	Associations between Level and Change in Physical Function and Brain Volumes. PLoS ONE, 2013, 8, e80386.	1.1	19
82	Metric to quantify white matter damage on brain magnetic resonance images. Neuroradiology, 2017, 59, 951-962.	1.1	19
83	Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging and Behavior, 2020, 14, 1865-1875.	1.1	19
84	Predictors of gait speed and its change over three years in community-dwelling older people. Aging, 2018, 10, 144-153.	1.4	19
85	Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure. Social Cognitive and Affective Neuroscience, 2016, 11, 1255-1261.	1.5	18
86	Differentiation of calcified regions and iron deposits in the ageing brain on conventional structural MR images. Journal of Magnetic Resonance Imaging, 2014, 40, 324-333.	1.9	17
87	Rationale and design of a longitudinal study of cerebral small vessel diseases, clinical and imaging outcomes in patients presenting with mild ischaemic stroke: Mild Stroke Study 3. European Stroke Journal, 2021, 6, 81-88.	2.7	17
88	Sample size considerations for trials using cerebral white matter hyperintensity progression as an intermediate outcome at 1Âyear after mild stroke: results of a prospective cohort study. Trials, 2017, 18, 78.	0.7	16
89	Polygenic Architecture of Human Neuroanatomical Diversity. Cerebral Cortex, 2020, 30, 2307-2320.	1.6	16
90	Color Fusion of Magnetic Resonance Images Improves Intracranial Volume Measurement in Studies of Aging. Open Journal of Radiology, 2012, 02, 1-9.	0.1	16

#	Article	IF	CITATIONS
91	<i>APOE/TOMM40</i> Genetic Loci, White Matter Hyperintensities, and Cerebral Microbleeds. International Journal of Stroke, 2015, 10, 1297-1300.	2.9	15
92	Hippocampal morphology and cognitive functions in community-dwelling older people: the Lothian Birth Cohort 1936. Neurobiology of Aging, 2017, 52, 1-11.	1.5	14
93	A protocol for precise comparisons of small vessel disease lesions between ex vivo magnetic resonance imaging and histopathology. International Journal of Stroke, 2019, 14, 310-320.	2.9	14
94	Birth weight is associated with brain tissue volumes seven decades later but not with MRI markers of brain ageing. NeuroImage: Clinical, 2021, 31, 102776.	1.4	14
95	Longitudinal serum S100Î ² and brain aging in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2018, 69, 274-282.	1.5	13
96	A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI. Magnetic Resonance Imaging, 2007, 25, 341-349.	1.0	11
97	Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiology of Aging, 2018, 62, 146-158.	1.5	11
98	Comparison of structural MRI brain measures between 1.5 and 3ÂT: Data from the Lothian Birth Cohort 1936. Human Brain Mapping, 2021, 42, 3905-3921.	1.9	11
99	ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. Behavior Genetics, 2013, 43, 13-23.	1.4	9
100	On the computational assessment of white matter hyperintensity progression: difficulties in method selection and bias field correction performance on images with significant white matter pathology. Neuroradiology, 2016, 58, 475-485.	1.1	9
101	Associations between hippocampal morphology, diffusion characteristics, and salivary cortisol in older men. Psychoneuroendocrinology, 2017, 78, 151-158.	1.3	9
102	Fluctuating asymmetry in brain structure and general intelligence in 73-year-olds. Intelligence, 2020, 78, 101407.	1.6	9
103	Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing. Age and Ageing, 2014, 43, 712-716.	0.7	6
104	Quantitative measurements of enlarged perivascular spaces in the brain are associated with retinal microvascular parameters in older community-dwelling subjects. Cerebral Circulation - Cognition and Behavior, 2020, 1, 100002.	0.4	6
105	Reaction time variability and brain white matter integrity Neuropsychology, 2019, 33, 642-657.	1.0	6
106	Gene-mapping study of extremes of cerebral small vessel disease reveals TRIM47 as a strong candidate. Brain, 2022, 145, 1992-2007.	3.7	6
107	Relationship between inferior frontal sulcal hyperintensities on brain MRI, ageing and cerebral small vessel disease. Neurobiology of Aging, 2021, 106, 130-138.	1.5	5
108	Structural Brain MRI Trait Polygenic Score Prediction of Cognitive Abilities. Twin Research and Human Genetics, 2015, 18, 738-745.	0.3	4

#	Article	IF	CITATIONS
109	Contribution of white matter hyperintensities to ventricular enlargement in older adults. NeuroImage: Clinical, 2022, 34, 103019.	1.4	4
110	Effects of random subject rotation on optimised diffusion gradient sampling schemes in diffusion tensor MRI. Magnetic Resonance Imaging, 2008, 26, 451-460.	1.0	2
111	3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model. Computer Methods and Programs in Biomedicine, 2016, 129, 51-62.	2.6	2
112	Reference Tracts and Generative Models for Brain White Matter Tractography. Journal of Imaging, 2018, 4, 8.	1.7	1
113	Improved Reference Tracts for Unsupervised Brain White Matter Tractography. Communications in Computer and Information Science, 2017, , 425-435.	0.4	1
114	Evidence of shared white matter disruption in bipolar disorder and sschizophrenia. European Psychiatry, 2008, 23, S43.	0.1	0
115	P1-58 The volumetric measurement of brain imaging biomarkers for epidemiological studies can be misleading in the validation of image segmentation methods. Journal of Epidemiology and Community Health, 2011, 65, A82-A83.	2.0	0