
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8886138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early warning of precessing neutron-star black hole binary mergers with the near-future gravitational-wave detectors. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3878-3884.	1.6	4
2	Search for scalar-tensor mixed polarization modes of gravitational waves. Physical Review D, 2022, 105, .	1.6	10
3	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
4	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	1.1	13
5	Displacement-noise-free neutron interferometer for gravitational wave detection using a single Mach-Zehnder configuration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 441, 128150.	0.9	4
6	Neutron displacement noise-free interferometer for gravitational-wave detection. Physical Review D, 2022, 105, .	1.6	2
7	Overview of KAGRA: Detector design and construction history. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	198
8	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	31
9	Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	150
10	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	66
11	Pure polarization test of GW170814 and GW170817 using waveforms consistent with modified theories of gravity. Physical Review D, 2021, 103, .	1.6	21
12	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	1.5	7
13	Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope. Journal of Physics: Conference Series, 2021, 1857, 012002.	0.3	1
14	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	3.0	32
15	Reduction of quantum noise using the quantum locking with an optical spring for gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 402, 127365.	0.9	4
16	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87
17	Impacts of overlapping gravitational-wave signals on the parameter estimation: Toward the search for cosmological backgrounds. Physical Review D, 2021, 104, .	1.6	17
18	Early warning of precessing compact binary merger with third-generation gravitational-wave detectors. Physical Review D, 2021, 104, .	1.6	5

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
20	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	7
21	Prospects for improving the sensitivity of the cryogenic gravitational wave detector KAGRA. Physical Review D, 2020, 102, .	1.6	12
22	Cosmological evolution of viable models in the generalized scalar-tensor theory. Physical Review D, 2020, 102, .	1.6	9
23	Optimization of quantum noise by completing the square of multiple interferometer outputs in quantum locking for gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126626.	0.9	12
24	An arm length stabilization system for KAGRA and future gravitational-wave detectors. Classical and Quantum Gravity, 2020, 37, 035004.	1.5	10
25	An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events. Astrophysical Journal Letters, 2020, 905, L25.	3.0	48
26	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	0.9	73
27	Prospects for gravitational-wave polarization tests from compact binary mergers with future ground-based detectors. Physical Review D, 2019, 100, .	1.6	19
28	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 2019, 36, 165008.	1.5	45
29	Convergence of Fourier-domain templates for inspiraling eccentric compact binaries. Physical Review D, 2019, 100, .	1.6	13
30	Generalized framework for testing gravity with gravitational-wave propagation. III. Future prospect. Physical Review D, 2019, 99, .	1.6	38
31	Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. Classical and Quantum Gravity, 2019, 36, 095015.	1.5	9
32	Constraining extra gravitational wave polarizations with Advanced LIGO, Advanced Virgo, and KAGRA and upper bounds from GW170817. Physical Review D, 2019, 100, .	1.6	26
33	KAGRA: 2.5 generation interferometric gravitational wave detector. Nature Astronomy, 2019, 3, 35-40.	4.2	331
34	Cosmological test of gravity with gravitational waves. , 2019, , .		0
35	Parity-violating gravity and GW170817. Physical Review D, 2018, 98, .	1.6	54
36	Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation. Physical Review D, 2018, 97, .	1.6	121

#	Article	IF	CITATIONS
37	Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory. Physical Review D, 2018, 97, .	1.6	113
38	Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector. Physical Review D, 2018, 97, .	1.6	15
39	Polarization test of gravitational waves from compact binary coalescences. Physical Review D, 2018, 98, .	1.6	40
40	Constraining stellar binary black hole formation scenarios with <i>eLISA</i> eccentricity measurements. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4375-4380.	1.6	85
41	Measurement of Hubble constant with stellar-mass binary black holes. Physical Review D, 2017, 96, .	1.6	23
42	The status of DECIGO. Journal of Physics: Conference Series, 2017, 840, 012010.	0.3	148
43	Testing gravity with pulsar scintillation measurements. Physical Review D, 2017, 95, .	1.6	4
44	Search method for an emission line of a GW background. Journal of Physics: Conference Series, 2016, 716, 012013.	0.3	1
45	Measuring Gravitational-Wave Propagation Speed with Multimessenger Observations. Journal of Physics: Conference Series, 2016, 716, 012018.	0.3	0
46	Gravitational wave memory: A new approach to study modified gravity. Physical Review D, 2016, 94, .	1.6	28
47	Detecting black-hole binary clustering via the second-generation gravitational-wave detectors. Physical Review D, 2016, 94, .	1.6	21
48	eLISA eccentricity measurements as tracers of binary black hole formation. Physical Review D, 2016, 94,	1.6	115
49	Constraining the propagation speed of gravitational waves with compact binaries at cosmological distances. Physical Review D, 2016, 93, .	1.6	18
50	Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological Probe without Redshift Information. Physical Review Letters, 2016, 116, 121302.	2.9	42
51	Measurement of Schumann Resonance at Kamioka. Journal of Physics: Conference Series, 2016, 716, 012020.	0.3	8
52	Weak-value amplification beyond the standard quantum limit in position measurements. Physical Review A, 2015, 92, .	1.0	8
53	Search for an emission line of a gravitational wave background. Physical Review D, 2015, 91, .	1.6	4
54	REHEATING AFTER f(R) INFLATION AND OBSERVATIONAL CONSTRAINTS. , 2015, , .		0

#	Article	IF	CITATIONS
55	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	0.7	4
56	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
57	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
58	Constraint on reheating after <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo) (str<="" 0="" 10="" 50="" 617="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>etch.ys="fal</td><td>se"27</td></mml:mo)></mml:mo </mml:math>	etc h.y s="fal	se" 27
59	89, . Measuring speed of gravitational waves by observations of photons and neutrinos from compact binary mergers and supernovae. Physical Review D, 2014, 90, .	1.6	56
60	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
61	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
62	Probing for massive stochastic gravitational-wave background with a detector network. Physical Review D, 2013, 88, .	1.6	18
63	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
64	Model-independent test of gravity with a network of ground-based gravitational-wave detectors. Physical Review D, 2013, 87, .	1.6	49
65	Beyond Concordance Cosmology with Magnification of Gravitational-Wave Standard Sirens. Physical Review Letters, 2013, 110, 151103.	2.9	67
66	Direct measurement of the positive acceleration of the universe and testing inhomogeneous models under gravitational wave cosmology. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 031-031.	1.9	8
67	Weak-value amplification in a shot-noise-limited interferometer. Physical Review A, 2012, 85, .	1.0	36
68	Cosmology with space-based gravitational-wave detectors: Dark energy and primordial gravitational waves. Physical Review D, 2012, 85, .	1.6	69
69	Probing the Inhomogeneous Universe with Gravitational Wave Cosmology. Journal of Physics: Conference Series, 2012, 363, 012056.	0.3	6
70	Gravitational-wave standard siren without redshift identification. Journal of Physics: Conference Series, 2012, 363, 012052.	0.3	8
71	Evaluation of weak measurements to all orders. Physical Review A, 2012, 85, .	1.0	60
	Reheating after <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>f</mml:mi><mml:mo< td=""><td></td><td></td></mml:mo<></mml:math>		

display="inline"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 52 Td (stretchy="false">)³²/mml:mo 72

#	Article	IF	CITATIONS
73	Tracing the redshift evolution of Hubble parameter with gravitational-wave standard sirens. Physical Review D, 2011, 83, .	1.6	43
74	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
75	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	6.5	716
76	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	1.5	456
77	Noise cancellation properties of displacement noise free interferometer. Journal of Physics: Conference Series, 2010, 228, 012026.	0.3	Ο
78	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
79	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	1.6	104
80	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
81	Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1–1ÂHz. Physical Review D, 2010, 81, .	1.6	61
82	Measurement of angular antispring effect in optical cavity by radiation pressure. Physical Review D, 2010, 81, .	1.6	14
83	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
84	Development of a Displacement- and Frequency-Noise-Free Interferometer in a 3D Configuration for Gravitational Wave Detection. Physical Review Letters, 2009, 103, 171101.	2.9	6
85	Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Physical Review D, 2009, 79, .	1.6	144
86	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	1.6	45
87	DECIGO: The Japanese space gravitational wave antenna. Journal of Physics: Conference Series, 2009, 154, 012040.	0.3	30
88	Laser-interferometric detectors for gravitational wave backgrounds at 100ÂMHz: Detector design and sensitivity. Physical Review D, 2008, 77, .	1.6	70
89	Demonstration of displacement-noise-free interferometry using bi-directional Mach–Zehnder interferometers. Classical and Quantum Gravity, 2008, 25, 114031.	1.5	0
90	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	1.5	22

#	Article	IF	CITATIONS
91	Experimental investigation of a control scheme for a zero-detuning resonant sideband extraction interferometer for next-generation gravitational-wave detectors. Classical and Quantum Gravity, 2008, 25, 195008.	1.5	5
92	Optimal location of two laser-interferometric detectors for gravitational wave backgrounds at 100 MHz. Classical and Quantum Gravity, 2008, 25, 225011.	1.5	8
93	Search for a Stochastic Background of 100-MHz Gravitational Waves with Laser Interferometers. Physical Review Letters, 2008, 101, 101101.	2.9	77
94	Resonant Speed Meter for Gravitational-Wave Detection. Physical Review Letters, 2008, 101, 081101.	2.9	5
95	Experimental investigation of a control scheme for a tuned resonant sideband extraction interferometer for next-generation gravitational-wave detectors. Journal of Physics: Conference Series, 2008, 122, 012017.	0.3	0
96	Quantum noise in differential-type gravitational-wave interferometer and signal recycling. Journal of Physics: Conference Series, 2008, 122, 012019.	0.3	0
97	The Japanese space gravitational wave antenna; DECIGO. Journal of Physics: Conference Series, 2008, 120, 032004.	0.3	34
98	DECIGO pathfinder. Journal of Physics: Conference Series, 2008, 120, 032005.	0.3	5
99	A study for reduction of radiation pressure noise in gravitational wave detectors. Journal of Physics: Conference Series, 2008, 122, 012020.	0.3	1
100	Displacement noise free interferometory for gravitational wave detection. Journal of Physics: Conference Series, 2008, 120, 032006.	0.3	0
101	The experimental plan of displacement- and frequency-noise free laser interferometer. Journal of Physics: Conference Series, 2008, 122, 012022.	0.3	0
102	The Japanese space gravitational wave antenna - DECIGO. Journal of Physics: Conference Series, 2008, 122, 012006.	0.3	46
103	Development of a detector pair for very high frequency gravitational waves. Journal of Physics: Conference Series, 2008, 122, 012007.	0.3	3
104	Quantum noise in differential-type gravitational-wave interferometer and signal recycling. Physical Review D, 2007, 76, .	1.6	3
105	The Japanese space gravitational wave antenna—DECIGO. Classical and Quantum Gravity, 2006, 23, S125-S131.	1.5	388
106	Gravitational Wave Physics and Astronomy in the nascent era. Progress of Theoretical and Experimental Physics, 0, , .	1.8	3