Kwon-Young Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/888598/publications.pdf

Version: 2024-02-01

88 papers 2,137 citations

218677 26 h-index 276875 41 g-index

88 all docs 88 docs citations

88 times ranked 1906 citing authors

#	Article	IF	CITATIONS
1	Biohydrogen Machinery: Recent Insights, Genetic Fabrication, and Future Prospects. Chemical Engineering and Technology, 2023, 46, 179-190.	1.5	2
2	Monooxygenase-mediated cascade oxidation of fatty acids for the production of biopolymer building blocks. Biomass Conversion and Biorefinery, 2023, 13, 12319-12331.	4.6	2
3	Quantum dot synthesis from waste biomass and its applications in energy and bioremediation. Chemosphere, 2022, 293, 133564.	8.2	22
4	Indigo derivatives-incorporated functional polyhydroxybutyrate polymer with controlled biodegradability. Dyes and Pigments, 2022, 198, 110017.	3.7	3
5	Finding of novel lactate utilizing Bacillus sp. YHY22 and its evaluation for polyhydroxybutyrate (PHB) production. International Journal of Biological Macromolecules, 2022, 201, 653-661.	7.5	29
6	Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system. Enzyme and Microbial Technology, 2022, 155, 109994.	3.2	16
7	One-Step RT-qPCR for Viral RNA Detection Using Digital Analysis. Frontiers in Bioengineering and Biotechnology, 2022, 10, 837838.	4.1	2
8	Finding of novel polyhydroxybutyrate producer Loktanella sp. SM43 capable of balanced utilization of glucose and xylose from lignocellulosic biomass. International Journal of Biological Macromolecules, 2022, 208, 809-818.	7.5	21
9	Discoloration of indigo dyes by eco-friendly biocatalysts. Dyes and Pigments, 2021, 184, 108749.	3.7	29
10	Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli. Nature Chemical Biology, 2021, 17, 104-112.	8.0	32
11	Microbial Production of Melanin Pigments from Caffeic Acid and L-Tyrosine Using Streptomyces glaucescens and FCS-ECH-Expressing Escherichia coli. International Journal of Molecular Sciences, 2021, 22, 2413.	4.1	18
12	<i>Bacillus subtilis</i> as a robust host for biochemical production utilizing biomass. Critical Reviews in Biotechnology, 2021, 41, 827-848.	9.0	26
13	Microbial synthesis of violacein pigment and its potential applications. Critical Reviews in Biotechnology, 2021, 41, 879-901.	9.0	31
14	Tung Oil-Based Production of High 3-Hydroxyhexanoate-Containing Terpolymer Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) Using Engineered Ralstonia eutropha. Polymers, 2021, 13, 1084.	4.5	15
15	Fructose-Based Production of Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate Copolymer by Arctic Pseudomonas sp. B14-6. Polymers, 2021, 13, 1398.	4.5	33
16	Whole Cell Biotransformation of 1-dodecanol by Escherichia coli by Soluble Expression of ADH Enzyme from Yarrowia lipolytica. Biotechnology and Bioprocess Engineering, 2021, 26, 247-255.	2.6	7
17	Nitrogenâ€Neutral Amino Acids Refinery: Deamination of Amino Acids for Bioâ€Alcohol and Ammonia Production. ChemBioEng Reviews, 2021, 8, 213-226.	4.4	12
18	Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresource Technology, 2021, 326, 124733.	9.6	134

#	Article	IF	CITATIONS
19	Biosynthesis of C12 Fatty Alcohols by Whole Cell Biotransformation of C12 Derivatives Using Escherichia coli Two-cell Systems Expressing CAR and ADH. Biotechnology and Bioprocess Engineering, 2021, 26, 392-401.	2.6	5
20	Engineering of Shewanella marisflavi BBL25 for biomass-based polyhydroxybutyrate production and evaluation of its performance in electricity production. International Journal of Biological Macromolecules, 2021, 183, 1669-1675.	7.5	25
21	Enzymatic utilization of oil and lignocellulosic biomass using halophilic marine bacteria Micrococcus luteus and Pseudoalteromonas peptidolytica. 3 Biotech, 2021, 11, 360.	2.2	O
22	Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids. Science of the Total Environment, 2021, 781, 146636.	8.0	53
23	Bioprocess of Microbial Melanin Production and Isolation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 765110.	4.1	20
24	Engineering of CYP153A33 With Enhanced Ratio of Hydroxylation to Overoxidation Activity in Whole-Cell Biotransformation of Medium-Chain 1-Alkanols. Frontiers in Bioengineering and Biotechnology, 2021, 9, 817455.	4.1	3
25	Bioalcohol production from spent coffee grounds and okara waste biomass by engineered Bacillus subtilis. Biomass Conversion and Biorefinery, 2020, 10, 167-173.	4.6	16
26	Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dyes and Pigments, 2020, 173, 107889.	3.7	61
27	Numerical modelling for effect of water curtain in mitigating toxic gas release. Journal of Loss Prevention in the Process Industries, 2020, 63, 103972.	3.3	8
28	Characterization of a Tryptophan 6â€Halogenase from <i>Streptomyces albus</i> and Its Regioselectivity Determinants. ChemBioChem, 2020, 21, 1446-1452.	2.6	14
29	Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnology Advances, 2020, 40, 107504.	11.7	50
30	Effects of osmolytes on salt resistance of Halomonas socia CKY01 and identification of osmolytes-related genes by genome sequencing. Journal of Biotechnology, 2020, 322, 21-28.	3.8	13
31	Bioconversion of Plant Hydrolysate Biomass into Biofuels Using an Engineered Bacillus subtilis and Escherichia coli Mixed-whole Cell Biotransformation. Biotechnology and Bioprocess Engineering, 2020, 25, 477-484.	2.6	19
32	Stepwise Evolution of Crease Patterns on Stimuliâ€Responsive Hydrogels for the Production of Longâ€Range Ordered Structures. Advanced Materials Interfaces, 2020, 7, 2001551.	3.7	3
33	Multi-omics characterization of the osmotic stress resistance and protease activities of the halophilic bacterium <i>Pseudoalteromonas phenolica</i> in response to salt stress. RSC Advances, 2020, 10, 23792-23800.	3.6	11
34	Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings. Biotechnology and Bioprocess Engineering, 2020, 25, 646-654.	2.6	12
35	Pyrolysis of Polyethylene Terephthalate over Carbon-Supported Pd Catalyst. Catalysts, 2020, 10, 496.	3.5	36
36	Regioselective Biotransformation of Phloretin Using Streptomyces avermitilis MA4680. Biotechnology and Bioprocess Engineering, 2020, 25, 272-278.	2.6	5

#	Article	IF	CITATIONS
37	Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering. Journal of Biotechnology, 2020, 320, 66-73.	3.8	12
38	Functional Microbial Pigments Isolated from Chryseobacterium and Deinococcus species for Bio-paint Application. Biotechnology and Bioprocess Engineering, 2020, 25, 394-402.	2.6	8
39	\hat{l}_{\pm} , \hat{l}_{∞} -Oxyfunctionalization of C12 alkanes via whole-cell biocatalysis of CYP153A from Marinobacter aquaeolei and a new CYP from Nocardia farcinica IFM10152. Biochemical Engineering Journal, 2020, 156, 107524.	3.6	16
40	Engineering of melanin biopolymer by co-expression of MelC tyrosinase with CYP102G4 monooxygenase: Structural composition understanding by 15 tesla FT-ICR MS analysis. Biochemical Engineering Journal, 2020, 157, 107530.	3.6	10
41	Heterologous production of pyomelanin biopolymer using 4-hydroxyphenylpyruvate dioxygenase isolated from Ralstonia pickettii in Escherichia coli. Biochemical Engineering Journal, 2020, 157, 107548.	3.6	19
42	A review of recent progress in the synthesis of bio-indigoids and their biologically assisted end-use applications. Dyes and Pigments, 2020, 181, 108570.	3.7	31
43	Longâ€Range Ordered Structures: Stepwise Evolution of Crease Patterns on Stimuliâ€Responsive Hydrogels for the Production of Longâ€Range Ordered Structures (Adv. Mater. Interfaces 24/2020). Advanced Materials Interfaces, 2020, 7, 2070136.	3.7	0
44	Chitin biomass powered microbial fuel cell for electricity production using halophilic Bacillus circulans BBL03 isolated from sea salt harvesting area. Bioelectrochemistry, 2019, 130, 107329.	4.6	35
45	Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. Bioresource Technology, 2019, 289, 121704.	9.6	58
46	<scp>CFD</scp> / <scp>FEA</scp> connected modeling and analysis of vapor cloud explosion at a wastewater storage pond of a chemical plant in Korea. Energy Science and Engineering, 2019, 7, 272-287.	4.0	2
47	Synthesis and chemical composition analysis of protocatechualdehyde-based novel melanin dye by 15T FT-ICR: High dyeing performance on soft contact lens. Dyes and Pigments, 2019, 160, 546-554.	3.7	21
48	Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase. Dyes and Pigments, 2019, 162, 80-88.	3.7	40
49	Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresource Technology, 2019, 271, 306-315.	9.6	148
50	Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl oA synthetase and anaplerotic enzymes in engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2018, 115, 1971-1978.	3.3	58
51	FCS and ECH dependent production of phenolic aldehyde and melanin pigment from l-tyrosine in Escherichia coli. Enzyme and Microbial Technology, 2018, 112, 59-64.	3.2	14
52	Semi-rational engineering of CYP153A35 to enhance ï‰-hydroxylation activity toward palmitic acid. Applied Microbiology and Biotechnology, 2018, 102, 269-277.	3.6	27
53	Enhanced ammonium removal efficiency by ion exchange process of synthetic zeolite after Na+ and heat pretreatment. Water Science and Technology, 2018, 78, 1417-1425.	2.5	17
54	Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzyme and Microbial Technology, 2018, 119, 45-51.	3.2	17

#	Article	IF	CITATIONS
55	Recent advances in the microbial hydroxylation and reduction of soy isoflavones. FEMS Microbiology Letters, 2018, 365, .	1.8	12
56	Expression, purification and characterization of halophilic protease Pph_Pro1 cloned from Pseudoalteromonas phenolica. Protein Expression and Purification, 2018, 152, 46-55.	1.3	8
57	Polymeric solvent engineering for gram/liter scale production of a water-insoluble isoflavone derivative, (S)-equol. Applied Microbiology and Biotechnology, 2018, 102, 6915-6921.	3.6	18
58	Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered <i>Escherichia coli</i> Bioengineering, 2018, 115, 1971.	3.3	34
59	Expression, purification, and characterization of halophilic Pph_Pro1 protease isolated from Pseudoalteromonas phenolica. FASEB Journal, 2018, 32, 796.33.	0.5	0
60	Biosynthesis of indigo in Escherichia coli expressing self-sufficient CYP102A from Streptomyces cattleya. Dyes and Pigments, 2017, 140, 29-35.	3.7	36
61	Development of High Performance Polyurethane Elastomers Using Vanillin-Based Green Polyol Chain Extender Originating from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2017, 5, 4582-4588.	6.7	92
62	Quantitative targeted metabolomics for 15d-deoxy-Î"12, 14-PGJ2 (15d-PGJ2) by MALDI-MS. Biotechnology and Bioprocess Engineering, 2017, 22, 100-106.	2.6	3
63	Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Scientific Reports, 2017, 7, 39768.	3.3	30
64	Hydrolytic activities of hydrolase enzymes from halophilic microorganisms. Biotechnology and Bioprocess Engineering, 2017, 22, 450-461.	2.6	24
65	Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid. Biotechnology and Bioprocess Engineering, 2017, 22, 717-724.	2.6	21
66	Biosynthesis of (â^')-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion. ACS Chemical Biology, 2017, 12, 2883-2890.	3.4	31
67	Production of <i>pâ€</i> hydroxybenzoic acid from <i>pâ€</i> coumaric acid by <i>Burkholderia glumae</i> BGR1. Biotechnology and Bioengineering, 2016, 113, 1493-1503.	3.3	38
68	Production of i‰-hydroxy palmitic acid using CYP153A35 and comparison of cytochrome P450 electron transfer system in vivo. Applied Microbiology and Biotechnology, 2016, 100, 10375-10384.	3.6	28
69	Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 37-44.	3.0	25
70	Functional Study of Lysine Decarboxylases from Klebsiella pneumoniae in Escherichia coli and Application of Whole Cell Bioconversion for Cadaverine Production. Journal of Microbiology and Biotechnology, 2016, 26, 1586-1592.	2.1	14
71	The production of i‰-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 6667-6676.	3.6	31
72	Non-enzymatic PLP-dependent oxidative deamination of amino acids induces higher alcohol synthesis. Biotechnology and Bioprocess Engineering, 2015, 20, 988-994.	2.6	5

#	Article	IF	Citations
73	Regioselectivity-driven evolution of CYP102D1 for improved synthesis of 3′-ortho-dihydroxyisoflavone. Enzyme and Microbial Technology, 2015, 71, 20-27.	3.2	3
74	Ortho-hydroxylation of mammalian lignan enterodiol by cytochrome P450s from Actinomycetes sp Korean Journal of Chemical Engineering, 2015, 32, 471-477.	2.7	4
75	Temperature sensing using red fluorescent protein. Biotechnology and Bioprocess Engineering, 2015, 20, 67-72.	2.6	17
76	rational design and directed evolution of CYP102A1 (BM3) for regio-specific hydroxylation of isoflavone. Biotechnology and Bioprocess Engineering, 2015, 20, 225-233.	2.6	3
77	Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioprocess and Biosystems Engineering, 2015, 38, 2147-2154.	3.4	27
78	Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metabolic Engineering, 2014, 23, 53-61.	7.0	83
79	Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation. Applied Microbiology and Biotechnology, 2014, 98, 8191-8200.	3.6	28
80	Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Applied Microbiology and Biotechnology, 2013, 97, 1501-1511.	3.6	62
81	Development of Colorimetric HTS Assay of Cytochrome P450 for <i>ortho</i> à€Specific Hydroxylation, and Engineering of CYP102D1 with Enhanced Catalytic Activity and Regioselectivity. ChemBioChem, 2013, 14, 1231-1238.	2.6	9
82	Production of a novel <i>O</i> â€methylâ€isoflavone by regioselective sequential hydroxylation and <i>O</i> â€methylation reactions in <i>Streptomyces avermitilis</i> host system. Biotechnology and Bioengineering, 2013, 110, 2591-2599.	3.3	8
83	Engineering of daidzein 3'-hydroxylase P450 enzyme into catalytically self-sufficient cytochrome P450. Microbial Cell Factories, 2012, 11, 81.	4.0	22
84	Cloning, expression and characterization of CYP102D1, a selfâ€sufficient P450 monooxygenase from <i>Streptomycesâ€favermitilis</i> . FEBS Journal, 2012, 279, 1650-1662.	4.7	40
85	Novel iron–sulfur containing NADPHâ€Reductase from <i>Nocardia farcinica</i> IFM10152 and fusion construction with CYP51 lanosterol demethylase. Biotechnology and Bioengineering, 2012, 109, 630-636.	3.3	8
86	Screening of bacterial cytochrome P450s responsible for regiospecific hydroxylation of (iso)flavonoids. Enzyme and Microbial Technology, 2011, 48, 386-392.	3.2	30
87	Aâ€ring <i>ortho</i> òa€specific monohydroxylation of daidzein by cytochrome P450s of <i>Nocardia farcinica</i> IFM10152. Biotechnology Journal, 2009, 4, 1586-1595.	3 . 5	19
88	One-pot production of thermostable PHB biodegradable polymer by co-producing bio-melanin pigment in engineered Escherichia coli. Biomass Conversion and Biorefinery, $0, 1$.	4.6	3