MarÃ-a del Rosario FernÃ;ndez-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885751/publications.pdf

Version: 2024-02-01

MarÃa del Rosario

#	Article	IF	CITATIONS
1	Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 2019, 10, 5778.	12.8	245
2	Distributed acoustic sensing for seismic activity monitoring. APL Photonics, 2020, 5, .	5.7	92
3	Distributed Acoustic Sensing Using Chirped-Pulse Phase-Sensitive OTDR Technology. Sensors, 2019, 19, 4368.	3.8	86
4	Fully Distributed Optical Fiber Strain Sensor With 10 ^{â^'12} Ϊμ/â^šHz Sensitivity. Journal of Lightwave Technology, 2019, 37, 4487-4495.	4.6	73
5	Time-expanded phase-sensitive optical time-domain reflectometry. Light: Science and Applications, 2021, 10, 51.	16.6	52
6	Laser Phase-Noise Cancellation in Chirped-Pulse Distributed Acoustic Sensors. Journal of Lightwave Technology, 2018, 36, 979-985.	4.6	51
7	Chirped-Pulse Phase-Sensitive Reflectometer Assisted by First-Order Raman Amplification. Journal of Lightwave Technology, 2017, 35, 4677-4683.	4.6	50
8	SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts. Optics Letters, 2017, 42, 1728.	3.3	40
9	Steady-Sensitivity Distributed Acoustic Sensors. Journal of Lightwave Technology, 2018, 36, 5690-5696.	4.6	37
10	Seismic Monitoring With Distributed Acoustic Sensing From the Near-Surface to the Deep Oceans. Journal of Lightwave Technology, 2022, 40, 1453-1463.	4.6	35
11	Dynamic Measurements of 1000 Microstrains Using Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry. Journal of Lightwave Technology, 2019, 37, 4888-4895.	4.6	33
12	Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading. Optics Letters, 2016, 41, 5756.	3.3	29
13	Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon. Optics Letters, 2014, 39, 6241.	3.3	28
14	Scholte wave inversion and passive source imaging with ocean-bottom DAS. The Leading Edge, 2021, 40, 576-583.	0.7	26
15	Quadratic phase coding for SNR improvement in time-expanded phase-sensitive OTDR. Optics Letters, 2021, 46, 4406.	3.3	19
16	Surface Gravity Wave Interferometry and Ocean Current Monitoring With Oceanâ€Bottom DAS. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	19
17	Common-Path Dual-Comb Spectroscopy Using a Single Electro-Optic Modulator. Journal of Lightwave Technology, 2020, 38, 5107-5115.	4.6	18
18	Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes. Optics Express, 2013, 21, 10314.	3.4	17

MarÃa del Rosario

#	Article	IF	CITATIONS
19	Picosecond optical signal processing based on transmissive fiber Bragg gratings. Optics Letters, 2013, 38, 1247.	3.3	16
20	Design of Ultrafast All-Optical Signal Processing Devices Based on Fiber Bragg Gratings in Transmission. Journal of Lightwave Technology, 2013, 31, 1593-1600.	4.6	15
21	Monitoring of a Highly Flexible Aircraft Model Wing Using Time-Expanded Phase-Sensitive OTDR. Sensors, 2021, 21, 3766.	3.8	12
22	Noise Levels and Signals Observed on Submarine Fibers in the Canary Islands Using DAS. Seismological Research Letters, 2022, 93, 351-363.	1.9	11
23	Tunable, nondispersive optical filter using photonic Hilbert transformation. Optics Letters, 2014, 39, 5232.	3.3	10
24	Fast and direct measurement of the linear birefringence profile in standard single-mode optical fibers. Optics Letters, 2020, 45, 623.	3.3	8
25	All-optical wavelength conversion based on time-domain holography. Optics Express, 2015, 23, 22847.	3.4	7
26	THz-bandwidth photonic Hilbert transformers based on fiber Bragg gratings in transmission. Optics Letters, 2015, 40, 41.	3.3	6
27	Protecting fiber-optic links from third party intrusion using distributed acoustic sensors. , 2017, , .		6
28	Time-Expanded \hat{I}_1^1 -OTDR Based on Binary Sequences. IEEE Photonics Technology Letters, 2022, 34, 695-698.	2.5	6
29	Arbitrary Time-Limited Optical Pulse Processors Based on Transmission Bragg Gratings. IEEE Photonics Technology Letters, 2014, 26, 1754-1757.	2.5	5
30	High-contrast linear optical pulse compression using a temporal hologram. Optics Express, 2015, 23, 6833.	3.4	5
31	Reaching pε/â^šHz sensitivity in a distributed optical fiber strain sensor. , 2018, , .		5
32	Temporal phase conjugation based on time-domain holography. Optics Letters, 2015, 40, 127.	3.3	4
33	Analysis of Disturbance-Induced "Virtual―Perturbations in Chirped Pulse \$phi\$ -OTDR. IEEE Photonics Technology Letters, 2020, 32, 158-161.	2.5	4
34	Fiber Bragg Grating-Based Optical Signal Processing: Review and Survey. Applied Sciences (Switzerland), 2021, 11, 8189.	2.5	4
35	Cancellation of reference update-induced 1/f noise in a chirped-pulse DAS. Optics Letters, 2022, 47, 3588.	3.3	4
36	Time-domain Vander–Lugt filters for in-fiber complex (amplitude and phase) optical pulse shaping. Optics Letters, 2016, 41, 2121.	3.3	3

MARÃA DEL ROSARIO

#	Article	IF	CITATIONS
37	Extending the Measurement of True Dynamic Strain via Chirped-Pulse Phase-Sensitive Optical Time Domain Reflectometry to 100's of Microstrains. , 2018, , .		3
38	High-resolution chirped-pulse -OTDR by means of sub-bands processing. Journal of Lightwave Technology, 2020, , 1-1.	4.6	3
39	Impact of the laser phase noise on chirped-pulse phase-sensitive OTDR. Proceedings of SPIE, 2017, , .	0.8	2
40	Distributed Acoustic Sensing for Seismic Monitoring. , 2021, , .		2
41	Dual electro-optic comb spectroscopy using a single pseudo-randomly driven modulator. Optics Express, 2022, 30, 25103.	3.4	2
42	Design of an FBG-based Phase-only (All-pass) Filter for Energy-efficient All-optical Clock Recovery. , 2014, , .		1
43	High speed processing of complex-modulation signals based on time-domain holography. , 2015, , .		1
44	Impact of the probe pulse shape on the performance of phase-sensitive optical time-domain reflectometry sensors. Proceedings of SPIE, 2017, , .	0.8	1
45	20 dB SNR enhancement in phase-sensitive OTDR using pulse stretching and recompression. Proceedings of SPIE, 2017, , .	0.8	1
46	Chirped-pulse phase-sensitive reflectometry: hearing behind the walls with high fidelity. , 2017, , .		1
47	All-Optical Pulse Shaping in the Sub-Picosecond Regime Based on Fiber Grating Devices. , 2017, , 257-292.		1
48	Statistical Analysis of SNR in Chirped-pulse $\hat{I}^{I}_{I}OTDR$, 2018, , .		1
49	Submarine seismic tomography using optical fibres. Europhysics News, 2020, 51, 22-24.	0.3	1
50	> 10 dB SNR Enhancement in Distributed Acoustic Sensors through First Order Phase Noise Cancellation. , 2018, , .		1
51	Underwater seismology using submarine dark fibres. , 2020, , .		1
52	Time-Expansion in Distributed Acoustic Sensing. , 2021, , .		1
53	Design of an ultra-fast all-optical first-order integrator based on waveguide Bragg Gratings. , 2011, , .		0
54	Generation of Arbitrary Complex Optical Data Streams Using a Single Amplitude-Only (Mach-Zehnder) Modulator. , 2012, , .		0

4

MarÃa del Rosario

#	Article	IF	CITATIONS
55	Ultra-fast all-optical Nth-order Differentiators based on transmission fiber bragg gratings. , 2012, , .		Ο
56	Time-domain holography. , 2012, , .		0
57	Bandwidth-tunable optical filters based on photonic Hilbert transformation. , 2013, , .		О
58	Wavelength-preserving Temporal Phase Conjugation based on Intensity-only Detection and Modulation Devices. , 2015, , .		0
59	Design of photonic Hilbert transformers based on impulsive response specifications. , 2015, , .		Ο
60	Hilbert transformers based on fiber Bragg gratings in transmission. , 2015, , .		0
61	Transforming the Fiber-Optic Network into a Dense and Ultrasensitive Seismic Sensor Array. , 2018, , .		0
62	Kilometer-range distributed acoustic sensing by time- expanded phase-sensitive time-domain reflectometry. , 2021, , .		0
63	Ultrafast Arbitrary (Non-Minimum-Phase) Optical Pulse Processors Based On Bragg Gratings in Transmission. , 2014, , .		О
64	Fiber-optics Reconfigurable Arbitrary (Complex) Picosecond Pulse Shaping/Coding by Time-domain Amplitude-only Spectrum Modulation. , 2016, , .		0
65	Chirped-pulse phase-sensitive optical time-domain reflectometry. , 2016, , .		Ο
66	Photonic Seismology. , 2019, , .		0
67	Optimization of first-order phase noise cancellation in CP-ï†OTDR. , 2019, , .		Ο
68	Fast and direct measurement of longitudinal birefringence distribution in conventional single-mode optical fibers. , 2021, , .		0
69	Time-Domain Expansion in Phase-sensitive Optical Time Domain Reflectometry. , 2021, , .		О
70	Underwater seismic tomography with unprecedented resolution using fiber optics. , 2021, , .		0
71	Distributed acoustic sensing in seismology. , 2021, , .		0
72	High Resolution Distributed Optical Fiber Sensing Using Time-Expanded Phase-Sensitive Reflectometry. Frontiers in Sensors, 2022, 2, .	3.3	0