Shuai Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885492/publications.pdf

Version: 2024-02-01

236925 161849 3,110 67 25 54 citations h-index g-index papers 67 67 67 3738 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 2019, 363, .	12.6	521
2	Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nature Medicine, 2020, 26, 418-429.	30.7	272
3	Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sensors, 2019, 4, 379-388.	7.8	239
4	Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nature Biomedical Engineering, 2020, 4, 148-158.	22.5	223
5	Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Science Advances, 2019, 5, eaau6356.	10.3	208
6	A fluorometric skin-interfaced microfluidic device and smartphone imaging module for <i>in situ</i> quantitative analysis of sweat chemistry. Lab on A Chip, 2018, 18, 2178-2186.	6.0	166
7	Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Science Advances, 2020, 6, .	10.3	120
8	Superâ€Absorbent Polymer Valves and Colorimetric Chemistries for Timeâ€Sequenced Discrete Sampling and Chloride Analysis of Sweat via Skinâ€Mounted Soft Microfluidics. Small, 2018, 14, e1703334.	10.0	119
9	Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab on A Chip, 2017, 17, 2572-2580.	6.0	117
10	Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Science Translational Medicine, 2020, 12, .	12.4	93
11	Wireless, battery-free, flexible, miniaturized dosimeters monitor exposure to solar radiation and to light for phototherapy. Science Translational Medicine, $2018,10,10$	12.4	91
12	Sunscreen Product Performance and Other Determinants of Consumer Preferences. JAMA Dermatology, 2016, 152, 920.	4.1	61
13	Consumer Preferences, Product Characteristics, and Potentially Allergenic Ingredients in Best-selling Moisturizers. JAMA Dermatology, 2017, 153, 1099.	4.1	58
14	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Science Advances, 2021, 7, .	10.3	55
15	Wireless, skin-interfaced sensors for compression therapy. Science Advances, 2020, 6, .	10.3	52
16	Epidermal Electronic Systems for Measuring the Thermal Properties of Human Skin at Depths of up to Several Millimeters. Advanced Functional Materials, 2018, 28, 1802083.	14.9	47
17	Adverse Events Reported to the US Food and Drug Administration for Cosmetics and Personal Care Products. JAMA Internal Medicine, 2017, 177, 1202.	5.1	46
18	Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Science Advances, 2021, 7, .	10.3	45

#	Article	IF	CITATIONS
19	Oncofertility considerations in adolescents and young adults given a diagnosis of melanoma: Fertility risk of Food and Drug Administration–approved systemic therapies. Journal of the American Academy of Dermatology, 2016, 75, 528-534.	1.2	44
20	Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Science Advances, 2020, 6, .	10.3	40
21	A skin-conformable wireless sensor to objectively quantify symptoms of pruritus. Science Advances, 2021, 7, .	10.3	38
22	Cost-effectiveness of Prophylactic Moisturization for Atopic Dermatitis. JAMA Pediatrics, 2017, 171, e163909.	6.2	37
23	Skinâ€Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit. Advanced Materials, 2021, 33, e2103974.	21.0	35
24	A Call for Fertility Preservation Coverage for Breast Cancer Patients: The Cost of Consistency. Journal of the National Cancer Institute, 2017, 109, .	6.3	31
25	Wireless skin sensors for physiological monitoring of infants in low-income and middle-income countries. The Lancet Digital Health, 2021, 3, e266-e273.	12.3	31
26	Miniaturized wireless, skin-integrated sensor networks for quantifying full-body movement behaviors and vital signs in infants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	30
27	Biocompatible Light Guideâ€Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Advanced Functional Materials, 2021, 31, 2100576.	14.9	26
28	Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mechanics Letters, 2018, 22, 27-35.	4.1	24
29	Therapeutic transdermal drug innovation from 2000 to 2014: current status and outlook. Drug Discovery Today, 2015, 20, 1293-1299.	6.4	21
30	Rapid Capture and Extraction of Sweat for Regional Rate and Cytokine Composition Analysis Using a Wearable Soft Microfluidic System. Journal of Investigative Dermatology, 2021, 141, 433-437.e3.	0.7	17
31	Time for a makeoverâ€cosmetics regulation in the United States. Journal of Cosmetic Dermatology, 2019, 18, 2041-2047.	1.6	15
32	Advanced Machine Learning Tools to Monitor Biomarkers of Dysphagia: A Wearable Sensor Proof-of-Concept Study. Digital Biomarkers, 2021, 5, 167-175.	4.4	15
33	Thin, Millimeter Scale Fingernail Sensors for Thermal Characterization of Nail Bed Tissue. Advanced Functional Materials, 2018, 28, 1801380.	14.9	12
34	A Point-of-Care, Real-Time Artificial Intelligence System to Support Clinician Diagnosis of a Wide Range of Skin Diseases. Journal of Investigative Dermatology, 2021, 141, 1230-1235.	0.7	12
35	Device Safety Implications of the Clinical Data Leading to US Food and Drug Administration Approval of Soft-Tissue Fillers. JAMA Facial Plastic Surgery, 2017, 19, 421-429.	2.1	11
36	Daily Minutes of Unprotected Sun Exposure (MUSE) Inventory: Measure description and comparisons to UVR sensor and sun protection survey data. Preventive Medicine Reports, 2018, 11, 305-311.	1.8	11

#	Article	IF	CITATIONS
37	Potential impact of biologics and emerging therapies for psoriasis and atopic dermatitis on future fertility: Reassurance to patients but more data are needed. Journal of the American Academy of Dermatology, 2017, 77, 758-763.	1.2	10
38	Adverse events reported to the Food and Drug Administration from 2004 to 2016 for cosmetics and personal care products marketed to newborns and infants. Pediatric Dermatology, 2018, 35, 225-229.	0.9	10
39	A Qualitative, Cross-Sectional Study of Positive and Negative Comments of Residency Programs Across 9 Medical and Surgical Specialties. American Journal of Medicine, 2018, 131, 1130-1134.e6.	1.5	10
40	Overview of highâ€risk Food and Drug Administration recalls for cosmetics and personal care products from 2002 to 2016. Journal of Cosmetic Dermatology, 2019, 18, 1361-1365.	1.6	9
41	Social Media Ratings of Minimally Invasive Fat Reduction Procedures: Benchmarking Against Traditional Liposuction. Dermatologic Surgery, 2018, 44, 971-975.	0.8	8
42	Use of technology for the objective evaluation of scratching behavior: A systematic review. JAAD International, 2021, 5, 19-32.	2.2	8
43	Topical Drug Innovation From 2000 Through 2014. JAMA Dermatology, 2015, 151, 792.	4.1	6
44	Overview of Class I Device Recalls in Diagnostic Radiology, 2002-2015. Journal of the American College of Radiology, 2016, 13, 638-643.	1.8	6
45	Radiological Medical Device Innovation: Approvals via the Premarket Approval Pathway From 2000 to 2015. Journal of the American College of Radiology, 2017, 14, 24-33.	1.8	6
46	Visual perception training: a prospective cohort trial of a novel, technology-based method to teach melanoma recognition. Postgraduate Medical Journal, 2019, 95, 350-352.	1.8	6
47	Overview of High-Risk Medical Device Innovation in Gastroenterology from 2000 to 2014: Enhancing the Pipeline. Digestive Diseases and Sciences, 2016, 61, 2165-2174.	2.3	5
48	The Need for Ergonomics Education in Dermatology and Dermatologic Surgery. JAMA Dermatology, 2017, 153, 13.	4.1	5
49	Eczema, Atopic Dermatitis, or Atopic Eczema: Analysis of Global Search Engine Trends. Dermatitis, 2017, 28, 276-279.	1.6	5
50	Major FDA medical device recalls in ophthalmology from 2003 to 2015. Canadian Journal of Ophthalmology, 2018, 53, 98-103.	0.7	5
51	Starting at Birth: An Integrative, State-of-the-Science Framework for Optimizing Infant Neuromotor Health. Frontiers in Pediatrics, 2021, 9, 787196.	1.9	5
52	In vitro protocol for validating interface pressure sensors for therapeutic compression garments: Importance of sphygmomanometer placement and initial cuff diameter. Veins and Lymphatics, 2018, 7, .	0.1	3
53	Reducing FDA regulations for medical devices: cutting red tape or putting patients' lives at risk?. Expert Review of Medical Devices, 2018, 15, 859-861.	2.8	3
54	Epidermal Thermal Depth Sensors: Epidermal Electronic Systems for Measuring the Thermal Properties of Human Skin at Depths of up to Several Millimeters (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870242.	14.9	3

#	Article	IF	CITATIONS
55	The relationship between the number of available therapeutic options and government payer (medicare) Tj ETQq1	1.9.7843	14 rgBT /0\
56	Melanoma toolkit for early detection for primary care providers: A pilot study. Pigment Cell and Melanoma Research, 2021, 34, 984-986.	3.3	3
57	In Reply. Obstetrics and Gynecology, 2017, 129, 753-753.	2.4	1
58	Professional medical associations and the opportunity to promote breakthrough biomedical innovation. Drug Discovery Today, 2018, 23, 1453-1456.	6.4	1
59	Returning to (Electronic) Health Records That Guide and Teach. American Journal of Medicine, 2018, 131, 723-725.	1.5	1
60	Assessment of the Diameter of Pigmented Skin Lesions With and Without a Ruler. JAMA Dermatology, 2018, 154, 221.	4.1	1
61	Allergen Concerns and Popular Skin Care Productsâ€"Reply. JAMA Dermatology, 2018, 154, 115.	4.1	1
62	Much Choice, Much Confusion: Treating Basal Cell Carcinoma. Annals of Internal Medicine, 2018, 169, 500-501.	3.9	1
63	Pilot and feasibility deployment of an advanced remote monitoring platform for <scp>COVID</scp> â€19 in <scp>longâ€term</scp> care facilities. Journal of the American Geriatrics Society, 2022, 70, 968-971.	2.6	1
64	Approval-adjusted recall rates of high-risk medical devices from 2002-2016 across food and drug administration device categories. Issues in Law and Medicine, 2019, 34, 77-92.	0.6	1
65	Catalyzing Future Drug, Device, and Information Technology Breakthroughs in Dermatology. JAMA Dermatology, 2018, 154, 517.	4.1	O
66	Accuracy and sources of images from direct Google image searches for common dermatology terms. Cutis, 2016, 98, E6-E8.	0.3	0
67	Medical malpractice web advertising: a qualitative, cross-sectional analysis of plaintiff medical malpractice firms in Suffolk County, Massachusetts. Issues in Law and Medicine, 2017, 32, 205-214.	0.6	0