Sarah E Gilpin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885491/publications.pdf

Version: 2024-02-01

331538 377752 3,283 39 21 34 h-index citations g-index papers 43 43 43 4196 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Orthotopic Transplantation of Human Bioartificial Lung Grafts in a Porcine Model: A Feasibility Study. Seminars in Thoracic and Cardiovascular Surgery, 2022, 34, 752-759.	0.4	10
2	Protective Effects of Extracellular Matrix-Derived Hydrogels in Idiopathic Pulmonary Fibrosis. Tissue Engineering - Part B: Reviews, 2022, 28, 517-530.	2.5	5
3	Protease inhibitor Camostat Mesyalte blocks wild type SARS-CoV-2 and D614G viral entry in human engineered miniature lungs. Biomaterials, 2022, 285, 121509.	5.7	3
4	A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nature Biomedical Engineering, 2021, 5, 815-829.	11.6	228
5	Creation of Laryngeal Grafts from Primary Human Cells and Decellularized Laryngeal Scaffolds. Tissue Engineering - Part A, 2020, 26, 543-555.	1.6	14
6	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Research, 2020, 6, 00123-2020.	1.1	2
7	Technological advances in study of lung regenerative medicine:perspective from the 2019 Vermont lung stem cell conference. Cytotherapy, 2020, 22, 519-520.	0.3	6
8	Regenerative Medicine of the Respiratory Tract., 2019, , 1059-1072.		1
9	Bioengineering Human Lung Grafts on Porcine Matrix. Annals of Surgery, 2018, 267, 590-598.	2.1	80
10	A Fully Automated High-Throughput Bioreactor System for Lung Regeneration. Tissue Engineering - Part C: Methods, 2018, 24, 671-678.	1.1	12
11	Metabolic glycan labeling and chemoselective functionalization of native biomaterials. Biomaterials, 2018, 182, 127-134.	5.7	19
12	Acellular human lung scaffolds to model lung disease and tissue regeneration. European Respiratory Review, 2018, 27, 180021.	3.0	66
13	Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nature Communications, 2017, 8, 765.	5.8	91
14	Fibrillin-2 and Tenascin-C bridge the age gap in lung epithelial regeneration. Biomaterials, 2017, 140, 212-219.	5.7	54
15	Bioengineering Lungs for Transplantation. Thoracic Surgery Clinics, 2016, 26, 163-171.	0.4	32
16	Regenerative potential of human airway stem cells in lung epithelial engineering. Biomaterials, 2016, 108, 111-119.	5. 7	66
17	Bioengineering Human Myocardium on Native Extracellular Matrix. Circulation Research, 2016, 118, 56-72.	2.0	280
18	Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials, 2016, 75, 37-46.	5.7	115

#	Article	IF	CITATIONS
19	Assessment of Proliferation and Cytotoxicity in a Biomimetic Three-Dimensional Model of Lung Cancer. Annals of Thoracic Surgery, 2015, 100, 414-421.	0.7	25
20	Using Nature's Platform to Engineer Bio-Artificial Lungs. Annals of the American Thoracic Society, 2015, 12, S45-S49.	1.5	42
21	Design and validation of a clinical-scale bioreactor for long-term isolated lung culture. Biomaterials, 2015, 52, 79-87.	5.7	38
22	Engineering pulmonary vasculature in decellularized rat and human lungs. Nature Biotechnology, 2015, 33, 1097-1102.	9.4	199
23	Extended Biomimetic Culture and Functional Assessment of Recellularized Human Lungs. FASEB Journal, 2015, 29, 1029.18.	0.2	0
24	Abstract 309: Longitudinal monitoring of cell proliferation and cytotoxicity in a biomimetic 3D culture model for lung cancer using native extracellular matrix scaffolds., 2015,,.		0
25	Perfusion decellularization of whole organs. Nature Protocols, 2014, 9, 1451-1468.	5 . 5	220
26	Enhanced Lung Epithelial Specification of Human Induced Pluripotent Stem Cells on Decellularized Lung Matrix. Annals of Thoracic Surgery, 2014, 98, 1721-1729.	0.7	117
27	Perfusion decellularization of human and porcine lungs: Bringing the matrix to clinical scale. Journal of Heart and Lung Transplantation, 2014, 33, 298-308.	0.3	229
28	Abstract 2037: A 3D model for lung cancer based on decellularized lung scaffolds allows for in vitro testing of viral oncolysis. , 2014, , .		0
29	Bone marrow-derived progenitor cells in end-stage lung disease patients. BMC Pulmonary Medicine, 2013, 13, 48.	0.8	11
30	Up-Scaling Decellularization and Whole Organ Culture for Human Lung Regeneration. Journal of Heart and Lung Transplantation, 2013, 32, S69-S70.	0.3	5
31	Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 2013, 19, 646-651.	15.2	682
32	Altered progenitor cell and cytokine profiles in bronchiolitis obliterans syndrome. Journal of Heart and Lung Transplantation, 2012, 31, 222-228.	0.3	25
33	350 Biologic Subtyping of Human Chronic Lung Allograft Dysfunction. Journal of Heart and Lung Transplantation, 2012, 31, S124-S125.	0.3	0
34	Variable Recruitment Of Progenitor Cell Populations In End-Stage Lung Disease Patients Is Mediated By Inflammatory And Stem Cell-Specific Factors. , $2011, \ldots$		0
35	Bone Marrow-Derived Cell Populations Are Differentially Mobilized In End-Stage Lung Disease Patients. , 2010, , .		0
36	Circulating Fibrocytes Are an Indicator of Poor Prognosis in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 588-594.	2.5	486

SARAH E GILPIN

#	Article	IF	CITATIONS
37	The transforming growth factor-beta (TGF- \hat{l}^2) family and pulmonary fibrosis. Drug Discovery Today Disease Mechanisms, 2006, 3, 99-103.	0.8	13
38	Cell-specific Gene Expression in Patients with Usual Interstitial Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 557-565.	2.5	40
39	Restoration of thrombospondin 1 expression in tumor cells harbouring mutant ras oncogene by treatment with low doses of doxycycline. Biochemical and Biophysical Research Communications, 2003, 310, 109-114.	1.0	20