Jin-Quan Yu

List of Publications by Citations

Source: https://exaly.com/author-pdf/8885435/jin-quan-yu-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

326 papers

48,567 citations

118 h-index 216 g-index

455 ext. papers

53,597 ext. citations

13.6 avg, IF

8.21 L-index

#	Paper	IF	Citations
326	Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5094-115	16.4	3557
325	Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. <i>Accounts of Chemical Research</i> , 2012 , 45, 788-802	24.3	2291
324	Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. <i>Chemical Society Reviews</i> , 2009 , 38, 3242-72	58.5	1322
323	Palladium-Catalyzed Transformations of Alkyl C-H Bonds. <i>Chemical Reviews</i> , 2017 , 117, 8754-8786	68.1	1240
322	Cu(II)-catalyzed functionalizations of aryl C-H bonds using O2 as an oxidant. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6790-1	16.4	1204
321	Palladium(II)-katalysierte C-H-Aktivierung/C-C-Kreuzkupplung: Vielseitigkeit und Anwendbarkeit. <i>Angewandte Chemie</i> , 2009 , 121, 5196-5217	3.6	1115
320	Activation of remote meta-C-H bonds assisted by an end-on template. <i>Nature</i> , 2012 , 486, 518-22	50.4	663
319	Palladium-catalyzed methylation and arylation of sp2 and sp3 C-H bonds in simple carboxylic acids. Journal of the American Chemical Society, 2007 , 129, 3510-1	16.4	660
318	Ligand-enabled reactivity and selectivity in a synthetically versatile aryl C-H olefination. <i>Science</i> , 2010 , 327, 315-9	33.3	646
317	Pd(II)-catalyzed enantioselective activation of C(sp2)-H and C(sp3)-H bonds using monoprotected amino acids as chiral ligands. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4882-6	16.4	528
316	Palladium-catalyzed alkylation of sp2 and sp3 C-H bonds with methylboroxine and alkylboronic acids: two distinct C-H activation pathways. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12634-5	5 ^{16.4}	475
315	Pd(II)-catalyzed olefination of electron-deficient arenes using 2,6-dialkylpyridine ligands. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5072-4	16.4	472
314	A Simple and Versatile Amide Directing Group for C-H Functionalizations. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10578-99	16.4	458
313	Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group. <i>Science</i> , 2016 , 351, 252-6	33.3	453
312	Pd(II)-catalyzed ortho-trifluoromethylation of arenes using TFA as a promoter. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3648-9	16.4	452
311	Synthesis of beta-, gamma-, and delta-lactams via Pd(II)-catalyzed C-H activation reactions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14058-9	16.4	438
310	Pd(II)-catalyzed cross-coupling of sp3 C-H Bonds with sp2 and sp3 boronic acids using air as the oxidant. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7190-1	16.4	432

(2008-2005)

Palladium-catalyzed asymmetric iodination of unactivated C-H bonds under mild conditions. Angewandte Chemie - International Edition, 2005 , 44, 2112-5	16.4	429
Ligand-enabled meta-C-H activation using a transient mediator. <i>Nature</i> , 2015 , 519, 334-8	50.4	419
Developing ligands for palladium(II)-catalyzed C-H functionalization: intimate dialogue between ligand and substrate. <i>Journal of Organic Chemistry</i> , 2013 , 78, 8927-55	4.2	419
Enantioselective C(sp)-H bond activation by chiral transition metal catalysts. <i>Science</i> , 2018 , 359,	33.3	402
Conformation-induced remote meta-C-H activation of amines. <i>Nature</i> , 2014 , 507, 215-20	50.4	402
Ligand-controlled C(sp□)-H arylation and olefination in synthesis of unnatural chiral ⊞-amino acids. <i>Science</i> , 2014 , 343, 1216-20	33.3	397
Synthesis of indolines and tetrahydroisoquinolines from arylethylamines by Pd(II)-catalyzed C-H activation reactions. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6452-5	16.4	393
Ligand-accelerated C-H activation reactions: evidence for a switch of mechanism. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14137-51	16.4	390
Pd(II)-catalyzed amination of C-H bonds using single-electron or two-electron oxidants. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10806-7	16.4	388
Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acids. <i>Journal of the American Chemical Society</i> , 2010 , 132, 460-1	16.4	378
Palladium-catalyzed alkylation of aryl C-H bonds with sp3 organotin reagents using benzoquinone as a crucial promoter. <i>Journal of the American Chemical Society</i> , 2006 , 128, 78-9	16.4	375
Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic CH bond oxidation. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7420-4	16.4	373
Divergent C-H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7222-8	16.4	370
Pd(II)-catalyzed hydroxylation of arenes with 1 atm of O(2) or air. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14654-5	16.4	368
Pd-catalyzed intermolecular C-H amination with alkylamines. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7652-5	16.4	362
Versatile Pd(OTf)2 x 2 H2O-catalyzed ortho-fluorination using NMP as a promoter. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7520-1	16.4	350
Pd(II)-catalyzed enantioselective C-H activation of cyclopropanes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19598-601	16.4	338
Synthesis of 1,2- and 1,3-dicarboxylic acids via Pd(II)-catalyzed carboxylation of aryl and vinyl C-H bonds. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14082-3	16.4	338
	Angewandte Chemie - International Edition, 2005, 44, 2112-5 Ligand-enabled meta-C-H activation using a transient mediator. Nature, 2015, 519, 334-8 Developing ligands for palladium(II)-catalyzed C-H functionalization: intimate dialogue between ligand and substrate. Journal of Organic Chemistry, 2013, 78, 8927-55 Enantioselective C(sp)-H bond activation by chiral transition metal catalysts. Science, 2018, 359, Conformation-induced remote meta-C-H activation of amines. Nature, 2014, 507, 215-20 Ligand-controlled C(spl)-H arylation and olefination in synthesis of unnatural chiral H-amino acids. Science, 2014, 343, 1216-20 Synthesis of indolines and tetrahydroisoquinolines from arylethylamines by Pd(II)-catalyzed C-H activation reactions. Angewandte Chemie - International Edition, 2008, 47, 6452-5 Ligand-accelerated C-H activation reactions: evidence for a switch of mechanism. Journal of the American Chemical Society, 2010, 132, 14137-51 Pd(II)-catalyzed amination of C-H bonds using single-electron or two-electron oxidants. Journal of the American Chemical Society, 2009, 131, 10806-7 Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acids. Journal of the American Chemical Society, 2010, 132, 460-1 Palladium-catalyzed alkylation of aryl C-H bonds with sp3 organotin reagents using benzoquinone as a crucial promoter. Journal of the American Chemical Society, 2006, 128, 78-9 Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidatis under mild conditions: a dual role for carboxylic anhydrides in catalytic C-H bond oxidation. Angewandte Chemie - International Edition, 2005, 44, 7420-4 Divergent C-H Functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. Journal of the American Chemical Society, 2011, 133, 7652-5 Versatile Pd(DTf)2 x 2 H2O-catalyzed ortho-fluorination using NMP as a promoter. Journal of the American Chemical Society, 2011, 133, 7552-5 Versatile Pd(DTf)2 x 2 H2O-catalyzed ortho-fluorination usi	Angewandte Chemie - International Edition, 2005, 44, 2112-5 Ligand-enabled meta-C-H activation using a transient mediator. Nature, 2015, 519, 334-8 50-4 Developing ligands for palladium(II)-catalyzed C-H functionalization: intimate dialogue between ligand and substrate. Journal of Organic Chemistry, 2013, 78, 8927-55 Enantioselective C(sp)-H bond activation by chiral transition metal catalysts. Science, 2018, 359, 33-3 Conformation-induced remote meta-C-H activation of amines. Nature, 2014, 507, 215-20 50-4 Ligand-controlled C(spl)-H arylation and olefination in synthesis of unnatural chiral H-amino acids. Science, 2014, 343, 1216-20 Synthesis of indolines and tetrahydroisoquinolines from arylethylamines by Pd(II)-catalyzed C-H activation reactions. Angewandte Chemie - International Edition, 2008, 47, 6452-5 Ligand-accelerated C-H activation reactions: evidence for a switch of mechanism. Journal of the American Chemical Society, 2010, 132, 14137-51 164 Pd(II)-catalyzed amination of C-H bonds using single-electron or two-electron oxidants. Journal of the American Chemical Society, 2009, 131, 10806-7 Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acids. Journal of the American Chemical Society, 2010, 132, 460-1 Palladium-catalyzed alkylation of aryl C-H bonds with sp3 organotin reagents using benzoquinone as a crucial promoter. Journal of the American Chemical Society, 2010, 132, 460-1 Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C-H bond oxidation. Angewandte Chemie - International Edition, 2005, 44, 7420-4 Divergent C-H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. Journal of the American Chemical Society, 2011, 133, 7652-5 164 Pd(II)-catalyzed intermolecular C-H amination with alkylamines. Journal of the American Chemical Society, 2001, 131, 14654-5 164 Pd-catalyzed intermolecular C-H amination

291	Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1478-91	16.4	330
290	Pd(II)-catalyzed olefination of sp3 C-H bonds. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3680-	-1 16.4	327
289	Pd(II)-catalyzed hydroxyl-directed C-H olefination enabled by monoprotected amino acid ligands. Journal of the American Chemical Society, 2010 , 132, 5916-21	16.4	318
288	Pd(II)-catalyzed hydroxyl-directed C-H activation/C-O cyclization: expedient construction of dihydrobenzofurans. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12203-5	16.4	300
287	Pd(II)-catalyzed monoselective ortho halogenation of C-H bonds assisted by counter cations: a complementary method to directed ortho lithiation. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5215-9	16.4	296
286	Sigma-chelation-directed C-H functionalizations using Pd(II) and Cu(II) catalysts: regioselectivity, stereoselectivity and catalytic turnover. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 4041-7	3.9	294
285	Cu(II)-mediated C-H amidation and amination of arenes: exceptional compatibility with heterocycles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3354-7	16.4	288
284	Versatile Pd(II)-catalyzed C-H activation/aryl-aryl coupling of benzoic and phenyl acetic acids. <i>Journal of the American Chemical Society</i> , 2008 , 130, 17676-7	16.4	288
283	Evidence that protons can be the active catalysts in Lewis acid mediated hetero-Michael addition reactions. <i>Chemistry - A European Journal</i> , 2004 , 10, 484-93	4.8	288
282	Pd(II)-catalyzed enantioselective C-H activation/C-O bond formation: synthesis of chiral benzofuranones. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1236-9	16.4	284
281	Pd(II)-catalyzed para-selective C-H arylation of monosubstituted arenes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13864-7	16.4	282
280	Pd(0)/PR3-catalyzed intermolecular arylation of sp3 C-H bonds. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9886-7	16.4	282
279	Synthetic applications of Pd(II)-catalyzed C-H carboxylation and mechanistic insights: expedient routes to anthranilic acids, oxazolinones, and quinazolinones. <i>Journal of the American Chemical Society</i> , 2010 , 132, 686-93	16.4	274
278	Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity. <i>Journal of the American Chemical Society</i> , 2014 , 136, 344-55	16.4	270
277	Ligand-promoted C-3 selective C-H olefination of pyridines with Pd catalysts. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6964-7	16.4	268
276	Pd(II)-catalyzed ortho trifluoromethylation of arenes and insights into the coordination mode of acidic amide directing groups. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11948-51	16.4	262
275	Pd(II)-catalyzed ortho- or meta-C-H olefination of phenol derivatives. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7567-71	16.4	256
274	Ligand-accelerated enantioselective methylene C(sp3)-H bond activation. <i>Science</i> , 2016 , 353, 1023-1027	33.3	248

(2017-2015)

273	Ligand-Enabled Meta-C-H Alkylation and Arylation Using a Modified Norbornene. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11574-7	16.4	245
272	Pd(II)-catalyzed meta-C-H olefination, arylation, and acetoxylation of indolines using a U-shaped template. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10807-13	16.4	245
271	Pd(II)-catalyzed phosphorylation of aryl C-H bonds. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9322-5	16.4	245
270	Pd(II)-catalyzed carbonylation of C(sp3)-H bonds: a new entry to 1,4-dicarbonyl compounds. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17378-80	16.4	242
269	Overcoming the limitations of directed C-H functionalizations of heterocycles. <i>Nature</i> , 2014 , 515, 389-9	3 50.4	240
268	Palladium(II)-catalyzed ortho alkylation of benzoic acids with alkyl halides. <i>Angewandte Chemie</i> - <i>International Edition</i> , 2009 , 48, 6097-100	16.4	240
267	Role of N-acyl amino acid ligands in Pd(II)-catalyzed remote C-H activation of tethered arenes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 894-7	16.4	233
266	Cross-coupling of remote meta-C-H bonds directed by a U-shaped template. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18056-9	16.4	222
265	Enantioselective amine \Box -functionalization via palladium-catalysed C-H arylation of thioamides. <i>Nature Chemistry</i> , 2017 , 9, 140-144	17.6	218
264	Constructing multiply substituted arenes using sequential palladium(II)-catalyzed C-H olefination. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6169-73	16.4	210
263	Pd0/PR3-catalyzed arylation of nicotinic and isonicotinic acid derivatives. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1275-7	16.4	209
262	Ligand-enabled methylene C(sp3)-H bond activation with a Pd(II) catalyst. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18570-2	16.4	208
261	Palladium(II)-catalyzed enantioselective C(sp[])-H activation using a chiral hydroxamic acid ligand. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8138-42	16.4	206
260	Ligand-promoted C3-selective arylation of pyridines with Pd catalysts: gram-scale synthesis of (日)-preclamol. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19090-3	16.4	202
259	Site-selective C(sp3)-H functionalization of di-, tri-, and tetrapeptides at the N-terminus. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16940-6	16.4	199
258	Cu(II)-mediated ortho C-H alkynylation of (hetero)arenes with terminal alkynes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11590-3	16.4	199
257	PdII-Catalyzed Enantioselective Activation of C(sp2)?H and C(sp3)?H Bonds Using Monoprotected Amino Acids as Chiral Ligands. <i>Angewandte Chemie</i> , 2008 , 120, 4960-4964	3.6	198
256	Ligand-accelerated non-directed C-H functionalization of arenes. <i>Nature</i> , 2017 , 551, 489-493	50.4	197

255	Palladium(II)-catalyzed highly enantioselective C-H arylation of cyclopropylmethylamines. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2042-6	16.4	194
254	Ligand-enabled cross-coupling of C(sp3)-H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis. <i>Nature Chemistry</i> , 2014 , 6, 146-50	17.6	191
253	Ligand-enabled IPC-H olefination and carbonylation: construction of Equaternary carbon centers. Journal of the American Chemical Society, 2014 , 136, 5267-70	16.4	191
252	Pd-catalyzed enantioselective C-H iodination: asymmetric synthesis of chiral diarylmethylamines. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16344-7	16.4	190
251	Diverse ortho-C(sp)-H Functionalization of Benzaldehydes Using Transient Directing Groups. Journal of the American Chemical Society, 2017 , 139, 888-896	16.4	186
250	Highly convergent total synthesis of (+)-lithospermic acid via a late-stage intermolecular C-H olefination. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5767-9	16.4	183
249	Palladium(II)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9081-4	16.4	181
248	Remote site-selective C-H activation directed by a catalytic bifunctional template. <i>Nature</i> , 2017 , 543, 538-542	50.4	177
247	Hydroxyl-directed C⊞ carbonylation enabled by mono-N-protected amino acid ligands: An expedient route to 1-isochromanones. <i>Chemical Science</i> , 2011 , 2, 967	9.4	176
246	Pd-Catalyzed I-C(sp)-H Arylation of Free Amines Using a Transient Directing Group. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14554-14557	16.4	174
245	Palladium-catalyzed oxidation of Boc-protected N-methylamines with IOAc as the oxidant: a Boc-directed sp3 C-H bond activation. <i>Organic Letters</i> , 2006 , 8, 3387-90	6.2	171
244	Palladium(0)-catalyzed alkynylation of C(sp3)-H bonds. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3387-90	16.4	169
243	Ligand-Promoted Meta-C-H Arylation of Anilines, Phenols, and Heterocycles. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9269-76	16.4	167
242	Room-temperature enantioselective C-H iodination via kinetic resolution. <i>Science</i> , 2014 , 346, 451-5	33.3	164
241	Pd-catalyzed oxidative ortho-C-H borylation of arenes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 134-7	16.4	156
240	Ligand-accelerated cross-coupling of C(sp2)-H bonds with arylboron reagents. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18183-93	16.4	155
239	Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C-H Activation of Aryl and Alkyl Groups. <i>Accounts of Chemical Research</i> , 2017 , 50, 2853-2860	24.3	150
238	From Pd(OAc) to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C-H Functionalization Reactions. <i>Accounts of Chemical Research</i> , 2020 , 53, 833-851	24.3	149

237	Palladium-catalyzed ortho-selective C-H deuteration of arenes: evidence for superior reactivity of weakly coordinated palladacycles. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 734-7	16.4	148
236	Mechanistic rationalization of unusual kinetics in Pd-catalyzed C-H olefination. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4600-6	16.4	146
235	Key mechanistic features of enantioselective C-H bond activation reactions catalyzed by [(chiral mono-N-protected amino acid)-Pd(II)] complexes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1690-8	16.4	145
234	C-H functionalization logic enables synthesis of (+)-hongoquercin A and related compounds. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7317-20	16.4	145
233	Pd(II)-catalyzed C-H iodination using molecular I2 as the sole oxidant. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10326-9	16.4	144
232	Heterocycle Formation Palladium-Catalyzed C-H Functionalization. <i>Synthesis</i> , 2012 , 44, 1778-1791	2.9	141
231	A mild, catalytic, and highly selective method for the oxidation of alpha,beta-enones to 1,4-enediones. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3232-3	16.4	141
230	Formation of \oplus -chiral centers by asymmetric $\mathbb{C}(\text{sp3})$ -H arylation, alkenylation, and alkynylation. <i>Science</i> , 2017 , 355, 499-503	33.3	140
229	Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp)-H fluorination. <i>Nature Chemistry</i> , 2018 , 10, 755-762	17.6	140
228	Exceedingly fast copper(II)-promoted ortho C-H trifluoromethylation of arenes using TMSCFII Angewandte Chemie - International Edition, 2014 , 53, 10439-42	16.4	140
227	Enantioselective remote meta-C-H arylation and alkylation via a chiral transient mediator. <i>Nature</i> , 2018 , 558, 581-585	50.4	139
226	Ligand-promoted alkylation of C(sp3)-H and C(sp2)-H bonds. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13194-7	16.4	138
225	Ligand-accelerated ortho-C-H alkylation of arylcarboxylic acids using alkyl boron reagents. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17508-13	16.4	137
224	Expedient drug synthesis and diversification via ortho-C-H iodination using recyclable PdI2 as the precatalyst. <i>Organic Letters</i> , 2010 , 12, 3140-3	6.2	136
223	Palladium-Catalyzed Asymmetric Iodination of Unactivated C?H Bonds under Mild Conditions. <i>Angewandte Chemie</i> , 2005 , 117, 2150-2153	3.6	136
222	Cross-coupling of C(sp)-H Bonds with Organometallic Reagents via Pd(II)/Pd(0) Catalysis**. <i>Israel Journal of Chemistry</i> , 2010 , 50, 605-616	3.4	134
221	Ligand-Promoted meta-C-H Amination and Alkynylation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14092-14099	16.4	133
220	Pd(II)-Catalyzed Enantioselective C(sp)-H Borylation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3344-3347	16.4	131

219	Synthesis of Indolines and Tetrahydroisoquinolines from Arylethylamines by PdII-Catalyzed C?H Activation Reactions. <i>Angewandte Chemie</i> , 2008 , 120, 6552-6555	3.6	130
218	Ligand-enabled IC-H arylation of ⊞-amino acids using a simple and practical auxiliary. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3338-51	16.4	129
217	Ether-directed ortho-C-H olefination with a palladium(II)/monoprotected amino acid catalyst. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1245-7	16.4	128
216	Remote Meta-C-H Activation Using a Pyridine-Based Template: Achieving Site-Selectivity via the Recognition of Distance and Geometry. <i>ACS Central Science</i> , 2015 , 1, 394-9	16.8	127
215	Sequential C-H functionalization reactions for the enantioselective synthesis of highly functionalized 2,3-dihydrobenzofurans. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6774-7	16.4	126
214	Pd(II)-catalyzed o-C-H acetoxylation of phenylalanine and ephedrine derivatives with MeCOOO(t)Bu/Ac2O. <i>Organic Letters</i> , 2010 , 12, 2511-3	6.2	126
213	Eine einfache und vielseitige dirigierende Amidgruppe zur Funktionalisierung von C-H-Bindungen. <i>Angewandte Chemie</i> , 2016 , 128, 10734-10756	3.6	123
212	⊞-Arylation of Saturated Azacycles and N-Methylamines via Palladium(II)-Catalyzed C(sp(3))-H Coupling. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11876-9	16.4	121
211	Ru(II)-catalyzed ortho-C-H amination of arenes and heteroarenes at room temperature. <i>Organic Letters</i> , 2013 , 15, 5286-9	6.2	121
210	Ligand-Enabled Stereoselective EC(sp(3))-H Fluorination: Synthesis of Unnatural Enantiopure anti-EFluoro-⊞-amino Acids. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7067-70	16.4	118
209	Dehydrogenation of Inert Alkyl Groups via Remote CH Activation: Converting a Propyl Group into a FAllylic Complex. <i>Organometallics</i> , 2008 , 27, 1667-1670	3.8	116
208	Diverse pathways for the palladium(II)-mediated oxidation of olefins by tert-butylhydroperoxide. <i>Organic Letters</i> , 2002 , 4, 2727-30	6.2	116
207	Recyclable polyurea-microencapsulated Pd(0) nanoparticles: an efficient catalyst for hydrogenolysis of epoxides. <i>Organic Letters</i> , 2003 , 5, 4665-8	6.2	115
206	Pd(II)-catalyzed C-H functionalizations directed by distal weakly coordinating functional groups. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4391-7	16.4	114
205	Synthesis of indolines via Pd(II)-catalyzed amination of C-H bonds using PhI(OAc)2 as the bystanding oxidant. <i>Organic Letters</i> , 2013 , 15, 3058-61	6.2	109
204	Palladium(II)-Catalyzed Site-Selective C(sp)-H Alkynylation of Oligopeptides: A Linchpin Approach for Oligopeptide-Drug Conjugation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10924-10927	16.4	107
203	Understanding reactivity and stereoselectivity in palladium-catalyzed diastereoselective sp3 C-H bond activation: intermediate characterization and computational studies. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14118-26	16.4	106
202	Ligand-Enabled I-C(sp(3))-H Olefination of Amines: En Route to Pyrrolidines. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2055-9	16.4	105

201	Cu(OAc)2-catalyzed coupling of aromatic C-H bonds with arylboron reagents. <i>Organic Letters</i> , 2014 , 16, 5666-9	6.2	105
200	Overcoming the Limitations of 🛭 and 🖾 - H Arylation of Amines through Ligand Development. Journal of the American Chemical Society, 2018 , 140, 17884-17894	16.4	105
199	Remote meta-C-H olefination of phenylacetic acids directed by a versatile U-shaped template. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 888-91	16.4	104
198	Pd-Catalyzed Stereoselective Oxidation of Methyl Groups by Inexpensive Oxidants under Mild Conditions: A Dual Role for Carboxylic Anhydrides in Catalytic C?H Bond Oxidation. <i>Angewandte Chemie</i> , 2005 , 117, 7586-7590	3.6	104
197	Pd(II)-Catalyzed Enantioselective C(sp)-H Arylation of Free Carboxylic Acids. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6545-6549	16.4	103
196	Rh(III)-Catalyzed meta-C-H Olefination Directed by a Nitrile Template. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2200-2203	16.4	102
195	Practical Pd(II)-Catalyzed C-H Alkylation with Epoxides: One-Step Syntheses of 3,4-Dihydroisocoumarins. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10950-3	16.4	101
194	Passive F+-Oxidationsmittel ermölichen die selektive reduktive Eliminierung hochvalenter Metallzentren in der Katalyse. <i>Angewandte Chemie</i> , 2011 , 123, 1514-1528	3.6	99
193	Palladium(0)/PAr3 -Catalyzed Intermolecular Amination of C(sp(3))?H Bonds: Synthesis of EAmino Acids. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6545-9	16.4	98
192	Ligand-enabled triple C-H activation reactions: one-pot synthesis of diverse 4-aryl-2-quinolinones from propionamides. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6692-5	16.4	96
191	口证(sp(3))-H Functionalization through Directed Radical H-Abstraction. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5871-4	16.4	94
190	Rh(iii)-catalyzed C-H olefination of -pentafluoroaryl benzamides using air as the sole oxidant. <i>Chemical Science</i> , 2015 , 6, 1923-1927	9.4	92
189	Ligand-enabled cross-coupling of C(sp(3))-H bonds with arylsilanes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4618-21	16.4	91
188	Ligand-Promoted Borylation of C(sp(3))-H Bonds with Palladium(II) Catalysts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 785-9	16.4	91
187	Ligand-Enabled IC-H Arylation of ⊞-Amino Acids Without Installing Exogenous Directing Groups. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1506-1509	16.4	90
186	Achieving Site-Selectivity for C-H Activation Processes Based on Distance and Geometry: A Carpenter@ Approach. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10571-10591	16.4	89
185	Ligand-Enabled ⊡C(sp)-H Activation of Ketones. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3564-3568	16.4	88
184	Pd -Catalyzed Enantioselective C(sp)-H Activation/Cross-Coupling Reactions of Free Carboxylic Acids. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2134-2138	16.4	88

183	Ligand-Enabled Arylation of 🖟 C-H Bonds. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4317-21	16.4	87
182	Stereospecific deoxygenation of phosphine oxides with retention of configuration using triphenylphosphine or triethyl phosphite as an oxygen acceptor. <i>Organic Letters</i> , 2004 , 6, 4675-8	6.2	87
181	Enantioselective C-H Olefination of ⊞-Hydroxy and ⊞-Amino Phenylacetic Acids by Kinetic Resolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2856-60	16.4	86
180	A combined IM-MS/DFT study on [Pd(MPAA)]-catalyzed enantioselective C-H activation: relay of chirality through a rigid framework. <i>Chemistry - A European Journal</i> , 2015 , 21, 11180-8	4.8	84
179	Copper-Catalyzed Bromination of C(sp)-H Bonds Distal to Functional Groups. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 306-309	16.4	83
178	A Robust Protocol for Pd(II)-catalyzed C-3 Arylation of () Indazoles and Pyrazoles: Total Synthesis of Nigellidine Hydrobromide. <i>Chemical Science</i> , 2013 , 4, 2374-2379	9.4	82
177	Pd(OH)2/C-mediated selective oxidation of silyl enol ethers by tert-butylhydroperoxide, a useful method for the conversion of ketones to alpha,beta-enones or beta-silyloxy-alpha,beta-enones. <i>Organic Letters</i> , 2005 , 7, 1415-7	6.2	82
176	Ligand-promoted ortho-C-H amination with Pd catalysts. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2497-500	16.4	80
175	Ligand Promoted meta-C-H Chlorination of Anilines and Phenols. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14876-14879	16.4	79
174	Pd(II)-catalyzed ortho-trifluoromethylation of benzylamines. <i>Organic Letters</i> , 2013 , 15, 5258-61	6.2	79
173	Palladium(II)-Catalyzed ortho Alkylation of Benzoic Acids with Alkyl Halides. <i>Angewandte Chemie</i> , 2009 , 121, 6213-6216	3.6	77
172	Pd0/PR3-Catalyzed Arylation of Nicotinic and Isonicotinic Acid Derivatives. <i>Angewandte Chemie</i> , 2010 , 122, 1297-1299	3.6	77
171	Cu(II)-Mediated C(sp(2))-H Hydroxylation. <i>Journal of Organic Chemistry</i> , 2015 , 80, 8843-8	4.2	75
170	Remote CH bond functionalization reveals the distance-dependent isotope effect. <i>Tetrahedron</i> , 2008 , 64, 6979-6987	2.4	75
169	Ligand-Enabled meta-Selective C-H Arylation of Nosyl-Protected Phenethylamines, Benzylamines, and 2-Aryl Anilines. <i>Journal of the American Chemical Society</i> , 2017 , 139, 417-425	16.4	74
168	The Origins of Dramatic Differences in Five-Membered vs Six-Membered Chelation of Pd(II) on Efficiency of C(sp)-H Bond Activation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8514-8521	16.4	73
167	Enantioselective I-C(sp)-H Activation of Alkyl Amines via Pd(II)/Pd(0) Catalysis. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5322-5325	16.4	72
166	Understanding the reactivity of Pd(0)/PR3-catalyzed intermolecular C(sp(3))-H bond arylation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14206-14	16.4	71

165	Ligand-Enabled EC(sp)-H Olefination of Free Carboxylic Acids. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10363-10367	16.4	70
164	Ligand-Promoted Rhodium(III)-Catalyzed ortho-C-H Amination with Free Amines. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7449-7453	16.4	69
163	Methylene C(sp)-H Arylation of Aliphatic Ketones Using a Transient Directing Group. <i>ACS Catalysis</i> , 2017 , 7, 6938-6941	13.1	69
162	Copper-Mediated Late-Stage Functionalization of Heterocycle-Containing Molecules. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5317-5321	16.4	68
161	Practical Alkoxythiocarbonyl Auxiliaries for Iridium(I)-Catalyzed C-H Alkylation of Azacycles. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10530-10534	16.4	68
160	Rh(III)-Catalyzed meta-C-H Alkenylation with Alkynes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 76-79	16.4	66
159	Kinetic Resolution of Benzylamines via Palladium(II)-Catalyzed C-H Cross-Coupling. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7796-800	16.4	65
158	Cu(II)-catalyzed coupling of aromatic C-H bonds with malonates. <i>Organic Letters</i> , 2015 , 17, 1228-31	6.2	65
157	meta-C-H Arylation and Alkylation of Benzylsulfonamide Enabled by a Palladium(II)/Isoquinoline Catalyst. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8183-8186	16.4	62
156	Pd-Catalyzed <code>\B-Selective</code> C-H Functionalization of Olefins: En Route to 4-Imino- <code>Lactams</code> . <i>Journal of the American Chemical Society</i> , 2016 , 138, 2146-9	16.4	62
155	Enantioselective ortho-C-H cross-coupling of diarylmethylamines with organoborons. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11143-6	16.4	62
154	Cu(II)-mediated oxidative dimerization of 2-phenylpyridine derivatives. <i>Tetrahedron</i> , 2009 , 65, 3085-308	32 .4	62
153	Ligand-Promoted meta-C-H Functionalization of Benzylamines. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5125-5129	16.4	61
152	Experimental and Computational Development of a Conformationally Flexible Template for the meta-C-H Functionalization of Benzoic Acids. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1070.	2 ⁻¹ f0 1 1	4 ⁶¹
151	Constructing Multiply Substituted Arenes Using Sequential Palladium(II)-Catalyzed C?H Olefination. <i>Angewandte Chemie</i> , 2010 , 122, 6305-6309	3.6	61
150	Orchestrated triple C-H activation reactions using two directing groups: rapid assembly of complex pyrazoles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2501-4	16.4	59
149	Converting gem-dimethyl groups into cyclopropanes via Pd-catalyzed sequential C-H activation and radical cyclization. <i>Organic Letters</i> , 2006 , 8, 5685-8	6.2	59
148	Catalytic and stereoselective iodination of prochiral CH bonds. <i>Tetrahedron: Asymmetry</i> , 2005 , 16, 3502	-3505	58

147	Advancing the Logic of Chemical Synthesis: C-H Activation as Strategic and Tactical Disconnections for C-C Bond Construction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15767-15790	16.4	58
146	Monoselective o-C-H Functionalizations of Mandelic Acid and ⊞-Phenylglycine. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9877-84	16.4	57
145	Highly Versatile ⊞(sp)-H Iodination of Ketones Using a Practical Auxiliary. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12394-12397	16.4	56
144	Ligand-enabled -C-H olefination of phenylacetic amides with unactivated alkenes. <i>Chemical Science</i> , 2018 , 9, 1311-1316	9.4	56
143	Rhodium(II)-catalyzed nondirected oxidative alkenylation of arenes: arene loading at one equivalent. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2683-6	16.4	55
142	Silver(I) complexes with oxazoline-containing tripodal ligands: structure variation via counter anions and reaction conditions. <i>Dalton Transactions</i> , 2008 , 204-13	4.3	55
141	Reversing conventional site-selectivity in C(sp)-H bond activation. <i>Nature Chemistry</i> , 2019 , 11, 571-577	17.6	54
140	Lactonization as a general route to EC(sp)-H functionalization. <i>Nature</i> , 2020 , 577, 656-659	50.4	54
139	Palladium(II)-Catalyzed Selective Monofluorination of Benzoic Acids Using a Practical Auxiliary: A Weak-Coordination Approach. <i>Angewandte Chemie</i> , 2011 , 123, 9247-9250	3.6	54
138	Synthesis of EArylethenesulfonyl Fluoride via Pd-Catalyzed Nondirected C-H Alkenylation. <i>Organic Letters</i> , 2019 , 21, 1426-1429	6.2	54
137	Ligand-Enabled Auxiliary-Free meta-C-H Arylation of Phenylacetic Acids. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6874-6877	16.4	52
136	C?H Functionalization Logic Enables Synthesis of (+)-Hongoquercin A and Related Compounds. <i>Angewandte Chemie</i> , 2013 , 125, 7458-7461	3.6	51
135	Mechanistic Details of Pd(II)-Catalyzed C-H Iodination with Molecular I2: Oxidative Addition vs Electrophilic Cleavage. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9022-31	16.4	49
134	Sequential Functionalization of meta-C-H and ipso-C-O Bonds of Phenols. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1903-1907	16.4	47
133	Factors Controlling Stability and Reactivity of Dimeric Pd(II) Complexes in CH Functionalization Catalysis. <i>ACS Catalysis</i> , 2016 , 6, 829-839	13.1	47
132	Exceedingly Fast Copper(II)-Promoted ortho C?H Trifluoromethylation of Arenes using TMSCF3. <i>Angewandte Chemie</i> , 2014 , 126, 10607-10610	3.6	47
131	Enantioselective C-H Arylation and Vinylation of Cyclobutyl Carboxylic Amides. <i>ACS Catalysis</i> , 2018 , 8, 2577-2584	13.1	46
130	Palladium Catalyzed -C-H Functionalization of Masked Aromatic Aldehydes. <i>ACS Catalysis</i> , 2018 , 8, 7362-	-73.67	46

129	Pd -Catalyzed Enantioselective C(sp)-H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9594-9600	16.4	45	
128	Pd(II)-Catalyzed C3-Selective Arylation of Pyridine with (Hetero)arenes. <i>Organic Letters</i> , 2016 , 18, 744-7	6.2	45	
127	Palladium(II)-Catalyzed Site-Selective C(sp3)⊞ Alkynylation of Oligopeptides: A Linchpin Approach for OligopeptideDrug Conjugation. <i>Angewandte Chemie</i> , 2017 , 129, 11064-11067	3.6	44	
126	Amide-Directed Arylation of sp C-H Bonds using Pd(II) and Pd(0) Catalysts. <i>Tetrahedron</i> , 2010 , 66, 4811-4	4 <u>8</u> .45	44	
125	Pd(II)-Catalyzed Enantioselective I-C(sp)-H Functionalizations of Free Cyclopropylmethylamines. Journal of the American Chemical Society, 2020 , 142, 12015-12019	16.4	43	
124	Palladium(0)/PAr3-Catalyzed Intermolecular Amination of C(sp3)?H Bonds: Synthesis of EAmino Acids. <i>Angewandte Chemie</i> , 2015 , 127, 6645-6649	3.6	43	
123	Ligand-Enabled Pd(II)-Catalyzed Bromination and Iodination of C(sp)-H Bonds. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5724-5727	16.4	42	
122	Differentiation and functionalization of remote C-H bonds in adjacent positions. <i>Nature Chemistry</i> , 2020 , 12, 399-404	17.6	42	
121	Ligand-Promoted Non-Directed C-H Cyanation of Arenes. <i>Chemistry - A European Journal</i> , 2019 , 25, 2199) <u>-</u> 2802	42	
120	Remote Para-C-H Acetoxylation of Electron-Deficient Arenes. <i>Organic Letters</i> , 2019 , 21, 540-544	6.2	42	
119	Ligand-Promoted Rh -Catalyzed Thiolation of Benzamides with a Broad Disulfide Scope. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9099-9103	16.4	40	
118	Identification of monodentate oxazoline as a ligand for copper-promoted -C-H hydroxylation and amination. <i>Chemical Science</i> , 2017 , 8, 1469-1473	9.4	40	
117	Pd(II)-Catalyzed Cross-Coupling of C()-H Bonds and Alkyl-, Aryl- and Vinyl-Boron Reagents Pd(II)/Pd(0) Catalysis. <i>Chemistry Letters</i> , 2011 , 40, 1004-1006	1.7	40	
116	EC-H Mono- and Dihalogenation of Alcohols. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2766-2	7704	39	
115	N-Heterocyclic Carbene Ligand-Enabled C(sp(3))-H Arylation of Piperidine and Tetrahydropyran Derivatives. <i>Chemistry - A European Journal</i> , 2016 , 22, 4748-52	4.8	39	
114	Copper mediated C-H amination with oximes: en route to primary anilines. <i>Chemical Science</i> , 2018 , 9, 5160-5164	9.4	39	
113	Ligand-Enabled Alkynylation of C(sp)-H Bonds with Palladium(II) Catalysts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1873-1876	16.4	38	
112	A Role for Pd(IV) in Catalytic Enantioselective C-H Functionalization with Monoprotected Amino Acid Ligands under Mild Conditions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9238-9245	16.4	38	

111	Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via EC(sp)-H Activation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16080-16083	16.4	38
110	Pd-Catalyzed Remote Meta-C-H Functionalization of Phenylacetic Acids Using a Pyridine Template. <i>Organic Letters</i> , 2018 , 20, 425-428	6.2	38
109	Ligand-Enabled, Palladium-Catalyzed EC(sp)-H Arylation of Weinreb Amides. ACS Catalysis, 2018 , 8, 9292	2 -9 297	38
108	Ligand-Enabled Monoselective EC(sp)-H Acyloxylation of Free Carboxylic Acids Using a Practical Oxidant. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6769-6776	16.4	37
107	C-H Arylation of Electron-Rich Arenes: Reversing the Conventional Site Selectivity. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14870-14877	16.4	35
106	Pd-Catalyzed I ^L C(sp)-H Fluorination of Free Amines. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9966-9974	16.4	35
105	Support of academic synthetic chemistry using separation technologies from the pharmaceutical industry. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2161-6	3.9	35
104	Palladium-Catalyzed ortho-Selective C?H Deuteration of Arenes: Evidence for Superior Reactivity of Weakly Coordinated Palladacycles. <i>Angewandte Chemie</i> , 2014 , 126, 753-756	3.6	35
103	Palladium-Catalyzed Remote meta-C-H Bond Deuteration of Arenes Using a Pyridine Template. Organic Letters, 2019 , 21, 4887-4891	6.2	34
102	Ligand-Promoted Borylation of C(sp3)?H Bonds with Palladium(II) Catalysts. <i>Angewandte Chemie</i> , 2016 , 128, 795-799	3.6	34
101	Ether-Directed ortho-CH Olefination with a Palladium(II)/Monoprotected Amino Acid Catalyst. <i>Angewandte Chemie</i> , 2013 , 125, 1283-1285	3.6	34
100	Ligand-Controlled Para-Selective C-H Arylation of Monosubstituted Arenes. <i>Organic Letters</i> , 2015 , 17, 3830-3	6.2	33
99	Ligand-Enabled I-C(sp3)⊞ Cross-Coupling of Nosyl-Protected Amines with Aryl- and Alkylboron Reagents. <i>ACS Catalysis</i> , 2017 , 7, 7777-7782	13.1	33
98	Distal I-C(sp)-H Olefination of Ketone Derivatives and Free Carboxylic Acids. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12853-12859	16.4	31
97	Remote meta-C?H Olefination of Phenylacetic Acids Directed by a Versatile U-Shaped Template. <i>Angewandte Chemie</i> , 2015 , 127, 902-905	3.6	31
96	The mechanism of directed Ni(ii)-catalyzed C-H iodination with molecular iodine. <i>Chemical Science</i> , 2018 , 9, 1144-1154	9.4	31
95	Iridium(I)-Catalyzed ⊞-C(sp)-H Alkylation of Saturated Azacycles. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5117-5125	16.4	30
94	Rapid Syntheses of Heteroaryl-Substituted Imidazo[1,5-a]indole and Pyrrolo[1,2-c]imidazole via Aerobic C2-H Functionalizations. <i>Organic Letters</i> , 2018 , 20, 284-287	6.2	30

93	Copper-Mediated Diastereoselective CH Thiolation of Ferrocenes. Organometallics, 2018, 37, 2832-2836	3.8	30
92	Ligand-Enabled EC⊞ Arylation of ⊞-Amino Acids Without Installing Exogenous Directing Groups. Angewandte Chemie, 2017 , 129, 1528-1531	3.6	29
91	Utilizing Carbonyl Coordination of Native Amides for Palladium-Catalyzed C(sp)-H Olefination. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11424-11428	16.4	29
90	Ligand-Enabled Arylation of 마CH Bonds. <i>Angewandte Chemie</i> , 2016 , 128, 4389-4393	3.6	29
89	Application of a Palladium-Catalyzed C-H Functionalization/Indolization Method to Syntheses of cis-Trikentrin A and Herbindole B. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11824-8	16.4	28
88	Rapid Construction of Tetralin, Chromane, and Indane Motifs via Cyclative C-H/C-H Coupling: Four-Step Total Synthesis of (日)-Russujaponol F. <i>Journal of the American Chemical Society</i> , 2021 , 143, 687-692	16.4	28
87	Hemilabile Benzyl Ether Enables I ^L C(sp)-H Carbonylation and Olefination of Alcohols. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15494-15497	16.4	27
86	Rapid Construction of a Benzo-Fused Indoxamycin Core Enabled by Site-Selective C-H Functionalizations. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8270-4	16.4	27
85	Ligand-Promoted ortho-C?H Amination with Pd Catalysts. <i>Angewandte Chemie</i> , 2015 , 127, 2527-2530	3.6	27
84	Merging C(sp)-H activation with DNA-encoding. <i>Chemical Science</i> , 2020 , 11, 12282-12288	9.4	27
83	Palladium-Catalyzed [3 + 2] Cycloaddition via Twofold 1,3-C(sp)-H Activation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16552-16556	16.4	27
82	Ligand-Promoted C(sp(3))-H Olefination en Route to Multi-functionalized Pyrazoles. <i>Chemistry - A European Journal</i> , 2016 , 22, 7059-62	4.8	27
81	Quantifying Structural Effects of Amino Acid Ligands in Pd(II)-Catalyzed Enantioselective CH Functionalization Reactions. <i>Organometallics</i> , 2018 , 37, 203-210	3.8	27
80	Copper-Catalyzed Bromination of C(sp3) Bonds Distal to Functional Groups. <i>Angewandte Chemie</i> , 2017 , 129, 312-315	3.6	26
79	Ligand-Enabled Triple C?H Activation Reactions: One-Pot Synthesis of Diverse 4-Aryl-2-quinolinones from Propionamides. <i>Angewandte Chemie</i> , 2014 , 126, 6810-6813	3.6	26
78	Mechanism and Stereoselectivity of Directed C(sp3)H Activation and Arylation Catalyzed by Pd(II) with Pyridine Ligand and Trifluoroacetate: A Computational Study. <i>ACS Catalysis</i> , 2015 , 5, 3648-3661	13.1	25
77	EC(sp(3))-H Arylation of ⊞-Hydroxy Acid Derivatives Utilizing Amino Acid as a Directing Group. Organic Letters, 2015 , 17, 5966-9	6.2	25
76	Selective hydrogenolysis of novel benzyl carbamate protecting groups. <i>Organic Letters</i> , 2000 , 2, 1049-51	6.2	25

A tautomeric ligand enables directed C-H hydroxylation with molecular oxygen. Science, 2021, 372, 145231,457 25 75 Enantioselectivity Model for Pd-Catalyzed CH Functionalization Mediated by the 13.1 24 74 Mono-N-protected Amino Acid (MPAA) Family of Ligands. ACS Catalysis, 2017, 7, 4344-4354 Modular, stereocontrolled C-H/C-C activation of alkyl carboxylic acids. Proceedings of the National 11.5 24 73 Academy of Sciences of the United States of America, 2019, 116, 8721-8727 Rational Development of Remote C-H Functionalization of Biphenyl: Experimental and 16.4 72 24 Computational Studies. Angewandte Chemie - International Edition, 2020, 59, 4770-4777 Remote C-H Activation of Various N-Heterocycles Using a Single Template. Chemistry - A European 4.8 71 24 Journal, 2018, 24, 3434-3438 Ligand-Promoted Rh(III)-Catalyzed Coupling of Aryl C-H Bonds with Arylboron Reagents. Journal of 70 4.2 24 Organic Chemistry, 2016, 81, 3416-22 Orchestrated Triple C?H Activation Reactions Using Two Directing Groups: Rapid Assembly of 69 3.6 23 Complex Pyrazoles. Angewandte Chemie, 2015, 127, 2531-2534 MetalBrganic frameworks with oxazoline-containing tripodal ligand: structure changes via 68 3.3 23 reaction medium and metal-to-ligand ratio. CrystEngComm, 2010, 12, 4328 meta-CH Arylation and Alkylation of Benzylsulfonamide Enabled by a Palladium(II)/Isoquinoline 67 3.6 22 Catalyst. Angewandte Chemie, 2017, 129, 8295-8298 Practical Alkoxythiocarbonyl Auxiliaries for Iridium(I)-Catalyzed Cℍ Alkylation of Azacycles. 66 3.6 21 Angewandte Chemie, **2017**, 129, 10666-10670 Ligand-Promoted meta-Cℍ Functionalization of Benzylamines. Angewandte Chemie, 2017, 129, 5207-52146 65 meta-Selective C-H Arylation of Fluoroarenes and Simple Arenes. Angewandte Chemie -16.4 64 International Edition, **2020**, 59, 13831-13835 Transient Directing Group Enabled Pd-catalyzed I-C(sp)-H Oxygenation of Alkyl Amines. ACS 63 13.1 21 Catalysis, 2020, 10, 5657-5662 Enantioselective Cℍ Olefination of 🛘-Hydroxy and 🖺-Amino Phenylacetic Acids by Kinetic 62 3.6 21 Resolution. Angewandte Chemie, 2016, 128, 2906-2910 Ligand-Enabled EMethylene C(sp)-H Arylation of Masked Aliphatic Alcohols. Angewandte Chemie -61 16.4 20 International Edition, **2020**, 59, 7783-7787 A General Protocol for Addressing Speciation of the Active Catalyst Applied to Ligand-Accelerated 60 13.1 20 Enantioselective C(sp3)⊞ Bond Arylation. ACS Catalysis, 2018, 8, 1528-1531 Unlocking nature QC-H bonds. Bioorganic and Medicinal Chemistry, 2014, 22, 4445-52 59 20 3.4 Cu-Mediated Amination of (Hetero)Aryl C-H bonds with NH Azaheterocycles. Angewandte Chemie -58 16.4 19 International Edition, **2019**, 58, 18141-18145

57	Functionalized Polymer-Supported Pyridine Ligands for Palladium-Catalyzed C(sp3)日 Arylation. <i>ACS Catalysis</i> , 2016 , 6, 5245-5250	13.1	18
56	Ligand-Enabled Alkynylation of C(sp3)日 Bonds with Palladium(II) Catalysts. <i>Angewandte Chemie</i> , 2017 , 129, 1899-1902	3.6	17
55	Understanding the Activity and Enantioselectivity of Acetyl-Protected Aminoethyl Quinoline Ligands in Palladium-Catalyzed EC(sp)-H Bond Arylation Reactions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16726-16733	16.4	17
54	Chrysomycin A Derivatives for the Treatment of Multi-Drug-Resistant Tuberculosis. <i>ACS Central Science</i> , 2020 , 6, 928-938	16.8	17
53	Ligand-Enabled Pd(II)-Catalyzed C(sp)-H Lactonization Using Molecular Oxygen as Oxidant. <i>Organic Letters</i> , 2020 , 22, 3960-3963	6.2	17
52	Ligand-Promoted Rhodium(III)-Catalyzed ortho-CH Amination with Free Amines. <i>Angewandte Chemie</i> , 2017 , 129, 7557-7561	3.6	16
51	Rhodium(II)-Catalyzed Nondirected Oxidative Alkenylation of Arenes: Arene Loading at One Equivalent. <i>Angewandte Chemie</i> , 2014 , 126, 2721-2724	3.6	16
50	Dynamic Ligand Exchange as a Mechanistic Probe in Pd-Catalyzed Enantioselective C-H Functionalization Reactions Using Monoprotected Amino Acid Ligands. <i>Journal of the American</i> Chemical Society, 2017 , 139, 18500-18503	16.4	16
49	Possible origin of electronic effects in Rh(I)-catalyzed enantioselective hydrogenation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9604-5	16.4	16
48	Enantioselective ortho-C?H Cross-Coupling of Diarylmethylamines with Organoborons. <i>Angewandte Chemie</i> , 2015 , 127, 11295-11298	3.6	15
47	A directive Ni catalyst overrides conventional site selectivity in pyridine C-H alkenylation. <i>Nature Chemistry</i> , 2021 , 13, 1207-1213	17.6	15
46	Ligand-Enabled Auxiliary-Free meta-CH Arylation of Phenylacetic Acids. <i>Angewandte Chemie</i> , 2017 , 129, 6978-6981	3.6	14
45	Directed C?H Activation Reactions of Synthetically Versatile Substrates: A Journey to Practicality. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 1393-1393	5.6	14
44	Improved syntheses of phosphine ligands by direct coupling of diarylbromophosphine with organometallic reagents. <i>Chemistry - A European Journal</i> , 2011 , 17, 10828-31	4.8	14
43	Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C-H activation. <i>Science</i> , 2021 , 374, 1281-1285	33.3	14
42	Copper-Mediated Late-Stage Functionalization of Heterocycle-Containing Molecules. <i>Angewandte Chemie</i> , 2017 , 129, 5401-5405	3.6	11
41	Advancing the Logic of Chemical Synthesis: CH Activation as Strategic and Tactical Disconnections for CL Bond Construction. <i>Angewandte Chemie</i> , 2021 , 133, 15901-15924	3.6	11
40	Enantio- and Diastereoswitchable C-H Arylation of Methylene Groups in Cycloalkanes. <i>Chemistry - A European Journal</i> , 2019 , 25, 8503-8507	4.8	10

39	Application of a Palladium-Catalyzed CH Functionalization/Indolization Method to Syntheses of cis-Trikentrin A and Herbindole B. <i>Angewandte Chemie</i> , 2016 , 128, 12003-12007	3.6	8
38	One-pot synthesis of imidazolinium salts via the ring opening of tetrahydrofuran. <i>Dalton Transactions</i> , 2017 , 46, 12430-12433	4.3	8
37	Insights into the Role of Transient Chiral Mediators and Pyridone Ligands in Asymmetric Pd-Catalyzed C-H Functionalization. <i>Journal of Organic Chemistry</i> , 2020 , 85, 13674-13679	4.2	8
36	An Epoxide-Mediated Deprotection Method for Acidic Amide Auxiliary. <i>Organic Letters</i> , 2017 , 19, 5860-	5 <u>8.6</u> 3	7
35	PdII-Catalyzed Enantioselective C(sp3) Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. <i>Angewandte Chemie</i> , 2020 , 132, 9681-9687	3.6	7
34	Syntheses, crystal structures and properties of silver(I) and copper(II) complexes with an oxazoline-containing tetradentate ligand. <i>New Journal of Chemistry</i> , 2010 , 34, 2436	3.6	7
33	Pd-Catalyzed Site-selective <code>Band</code> <code>I-C(sp)-H</code> Arylation of Primary Aldehydes Controlled by Transient Directing Groups <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	7
32	Ligand-Promoted RhIII-Catalyzed Thiolation of Benzamides with a Broad Disulfide Scope. Angewandte Chemie, 2019 , 131, 9197-9201	3.6	6
31	Distal □C(sp3)ℍ Olefination of Ketone Derivatives and Free Carboxylic Acids. <i>Angewandte Chemie</i> , 2020 , 132, 12953-12959	3.6	6
30	Transition Metal-Catalyzed C?H Functionalization: Synthetically Enabling Reactions for Building Molecular Complexity 2012 , 279-333		6
29	Highly selective hydration reaction of ⊞-pinene over H-mordenites pretreated with quaternary ammonium salts. <i>Chinese Journal of Chemistry</i> , 2010 , 13, 280-283	4.9	6
28	Pd(II)-Catalyzed Synthesis of Benzocyclobutenes by EMethylene-Selective C(sp)-H Arylation with a Transient Directing Group. <i>Journal of the American Chemical Society</i> , 2021 , 143, 20035-20041	16.4	6
27	Cyclization by C(sp3) Arylation with a Transient Directing Group for the Diastereoselective Preparation of Indanes. <i>ACS Catalysis</i> , 2021 , 11, 3115-3127	13.1	6
26	Mechanistic study of enantioselective Pd-catalyzed C(sp)-H activation of thioethers involving two distinct stereomodels <i>ACS Catalysis</i> , 2021 , 11, 9738-9753	13.1	6
25	meta-Selective CH Arylation of Fluoroarenes and Simple Arenes. <i>Angewandte Chemie</i> , 2020 , 132, 13935	-1,36939	9 5
24	Palladium-Catalyzed EC(sp3)ℍ Nitrooxylation of Ketones and Amides Using Practical Oxidants. <i>ACS Catalysis</i> ,14188-14193	13.1	5
23	Synthesis of Cyclic Anhydrides via Ligand-Enabled C-H Carbonylation of Simple Aliphatic Acids. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16382-16387	16.4	5
22	Ligand Enabled Pd(II)-Catalyzed □-C(sp)-H Lactamization of Native Amides <i>Journal of the American Chemical Society</i> , 2021 , 143, 21657-21666	16.4	5

(2019-2020)

21	Cu-Catalyzed C-H Alkenylation of Benzoic Acid and Acrylic Acid Derivatives with Vinyl Boronates. <i>Organic Letters</i> , 2020 , 22, 4692-4696	6.2	4
20	Ligand-Enabled EMethylene C(sp3)日 Arylation of Masked Aliphatic Alcohols. <i>Angewandte Chemie</i> , 2020 , 132, 7857-7861	3.6	4
19	Ligand-Accelerated -C-H Olefination of Phenylacetic Acids. <i>Organic Syntheses</i> , 2015 , 92, 58-75	1.2	4
18	Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp2)日 Bond Functionalization. <i>ACS Catalysis</i> ,12620-12631	13.1	4
17	Iodine Monoacetate 2008,		3
16	Cover Picture: PdII-Catalyzed Enantioselective Activation of C(sp2)?H and C(sp3)?H Bonds Using Monoprotected Amino Acids as Chiral Ligands (Angew. Chem. Int. Ed. 26/2008). <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4761-4761	16.4	3
15	Unconventional mechanism and selectivity of the Pd-catalyzed C-H bond lactonization in aromatic carboxylic acid <i>Nature Communications</i> , 2022 , 13, 315	17.4	3
14	Eselective CH Arylation of Electron-Deficient Thiophenes, Pyrroles, and Furans. <i>Israel Journal of Chemistry</i> , 2020 , 60, 416-418	3.4	2
13	Rational Development of Remote CII Functionalization of Biphenyl: Experimental and Computational Studies. <i>Angewandte Chemie</i> , 2020 , 132, 4800-4807	3.6	2
12	Selective C(sp3)⊞ Monoarylation Catalyzed by a Covalently Cross-Linked Reverse Micelle-Supported Palladium Catalyst. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 3611-3617	5.6	2
11	Rapid Construction of a Benzo-Fused Indoxamycin Core Enabled by Site-Selective C⊞ Functionalizations. <i>Angewandte Chemie</i> , 2016 , 128, 8410-8414	3.6	2
10	Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp3)⊞ Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species. <i>ACS Catalysis</i> , 2021 , 11, 11040-11048	13.1	2
9	A C-H Functionalization Strategy Enables an Enantioselective Formal Synthesis of (-)-Aflatoxin B. <i>Organic Letters</i> , 2021 ,	6.2	2
8	Roles of Ligand and Oxidant in Pd(II)-Catalyzed and Ligand-Enabled C(sp3)日 Lactonization in Aliphatic Carboxylic Acid: Mechanistic Studies. <i>ACS Catalysis</i> ,4848-4858	13.1	2
7	Ligand-Accelerated ortho-C?H Olefination of Phenylacetic Acids58-75		1
6	Synthesis of Cyclic Anhydrides via Ligand-Enabled CH Carbonylation of Simple Aliphatic Acids. <i>Angewandte Chemie</i> , 2021 , 133, 16518-16523	3.6	1
5	Supramolecular Chemistry of Silver 2010 , 329-355		0
4	Utilizing Carbonyl Coordination of Native Amides for Palladium-Catalyzed C(sp3)⊞ Olefination. Angewandte Chemie, 2019 , 131, 11546	3.6	

3 Catalytic, Enantioselective, C?H Functionalization to Form Carbon@arbon Bonds **2019**, 671-748

Asymmetric CH Bond Functionalization **2013**, 267-272

PdII-Catalyzed Enantioselective C(sp3) Activation/Cross-Coupling Reactions of Free Carboxylic Acids. *Angewandte Chemie*, **2018**, 131, 2156

3.6