Jonathan P Celli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8885206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chemical Reviews, 2010, 110, 2795-2838.	23.0	2,005
2	<i>Helicobacter pylori</i> moves through mucus by reducing mucin viscoelasticity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14321-14326.	3.3	347
3	A threeâ€dimensional in vitro ovarian cancer coculture model using a highâ€throughput cell patterning platform. Biotechnology Journal, 2011, 6, 204-212.	1.8	281
4	Rheology of Gastric Mucin Exhibits a pH-Dependent Solâ^'Gel Transition. Biomacromolecules, 2007, 8, 1580-1586.	2.6	250
5	Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1974-83.	3.3	184
6	Synergistic Enhancement of Carboplatin Efficacy with Photodynamic Therapy in a Three-Dimensional Model for Micrometastatic Ovarian Cancer. Cancer Research, 2010, 70, 9319-9328.	0.4	159
7	Viscoelastic Properties and Dynamics of Porcine Gastric Mucin. Biomacromolecules, 2005, 6, 1329-1333.	2.6	117
8	An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Scientific Reports, 2014, 4, 3751.	1.6	117
9	The Influence of Mucus Microstructure and Rheology in Helicobacter pylori Infection. Frontiers in Immunology, 2013, 4, 310.	2.2	97
10	Verteporfin-based photodynamic therapy overcomes gemcitabine insensitivity in a panel of pancreatic cancer cell lines. Lasers in Surgery and Medicine, 2011, 43, 565-574.	1.1	96
11	Killing Hypoxic Cell Populations in a 3D Tumor Model with EtNBS-PDT. PLoS ONE, 2011, 6, e23434.	1.1	79
12	Ki-67 as a Molecular Target for Therapy in an <i>In vitro</i> Three-Dimensional Model for Ovarian Cancer. Cancer Research, 2010, 70, 9234-9242.	0.4	72
13	Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. Journal of Biomedical Optics, 2010, 15, 1.	1.4	70
14	Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models. Scientific Reports, 2015, 5, 10093.	1.6	69
15	Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochemistry and Photobiology, 2020, 96, 232-259.	1.3	55
16	Image-Based Quantification of Benzoporphyrin Derivative Uptake, Localization, and Photobleaching in 3D Tumor Models, for Optimization of PDT Parameters. Theranostics, 2012, 2, 827-839.	4.6	54
17	Impact of treatment response metrics on photodynamic therapy planning and outcomes in a three-dimensional model of ovarian cancer. Journal of Biomedical Optics, 2013, 18, 098004.	1.4	37
18	Development and evaluation of a lowâ€cost, portable, LEDâ€based device for PDT treatment of earlyâ€stage oral cancer in resourceâ€limited settings. Lasers in Surgery and Medicine, 2019, 51, 345-351.	1.1	35

JONATHAN P CELLI

#	Article	IF	CITATIONS
19	Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids. Oncotarget, 2018, 9, 13009-13022.	0.8	35
20	Quantum dot light emitting devices for photomedical applications. Journal of the Society for Information Display, 2017, 25, 177-184.	0.8	34
21	ECM Composition and Rheology Regulate Growth, Motility, and Response to Photodynamic Therapy in 3D Models of Pancreatic Ductal Adenocarcinoma. Molecular Cancer Research, 2017, 15, 15-25.	1.5	34
22	Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress. Journal of Clinical Medicine, 2020, 9, 924.	1.0	31
23	Flexible quantum dot lightâ€emitting devices for targeted photomedical applications. Journal of the Society for Information Display, 2018, 26, 296-303.	0.8	28
24	PuraMatrix Encapsulation of Cancer Cells. Journal of Visualized Experiments, 2009, , .	0.2	24
25	A Review of Microbial Mediated Iron Nanoparticles (IONPs) and Its Biomedical Applications. Nanomaterials, 2022, 12, 130.	1.9	23
26	<i>In vivo</i> evaluation of battery-operated light-emitting diode-based photodynamic therapy efficacy using tumor volume and biomarker expression as endpoints. Journal of Biomedical Optics, 2015, 20, 048003.	1.4	21
27	Stromal Interactions as Regulators of Tumor Growth and Therapeutic Response: A Potential Target for Photodynamic Therapy?. Israel Journal of Chemistry, 2012, 52, 757-766.	1.0	19
28	Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer. Journal of Biomedical Optics, 2020, 25, 1.	1.4	19
29	Stochastic modeling of phenotypic switching and chemoresistance in cancer cell populations. Scientific Reports, 2019, 9, 10845.	1.6	18
30	Photodynamic Therapy for Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 4354.	1.7	18
31	Modulation of Extracellular Matrix Rigidity Via Riboflavinâ€mediated Photocrosslinking Regulates Invasive Motility and Treatment Response in a 3D Pancreatic Tumor Model. Photochemistry and Photobiology, 2020, 96, 365-372.	1.3	15
32	Photodestruction of Stromal Fibroblasts Enhances Tumor Response to PDT in 3D Pancreatic Cancer Coculture Models. Photochemistry and Photobiology, 2021, 97, 416-426.	1.3	13
33	Clinical evaluation of a mobile, low-cost system for fluorescence guided photodynamic therapy of early oral cancer in India. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102843.	1.3	12
34	Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology. Journal of Visualized Experiments, 2014, , .	0.2	11
35	Platform for ergonomic intraoral photodynamic therapy using low-cost, modular 3D-printed components: Design, comfort and clinical evaluation. Scientific Reports, 2019, 9, 15830.	1.6	10
36	<i>In situ</i> measurement of ECM rheology and microheterogeneity in embedded and overlaid 3D pancreatic tumor stroma co-cultures via passive particle tracking. Journal of Innovative Optical Health Sciences, 2017, 10, 1742003.	0.5	6

JONATHAN P CELLI

#	Article	IF	CITATIONS
37	Embedded system for a battery-operated LED-based photodynamic therapy device for treatment of early-stage oral cancers in resource-limited settings. , 2017, , .		4
38	Photodynamic Stromal Depletion (<scp>PSD</scp>) Enhances Therapeutic Nanoparticle Delivery in <scp>3D</scp> Pancreatic Ductal Adenocarcinoma (<scp>PDAC</scp>) Tumor Models. Photochemistry and Photobiology, 0, , .	1.3	4
39	Laser light sources for photobiomodulation: The role of power and beam characterization in treatment accuracy and reliability. PLoS ONE, 2022, 17, e0266193.	1.1	3
40	Development of low-cost devices for image-guided photodynamic therapy treatment of oral cancer in global health settings. Proceedings of SPIE, 2016, , .	0.8	2
41	Cancer Biophysics. , 2017, , .		2
42	Image-Based Quantification of Gold Nanoparticle Uptake and Localization in 3D Tumor Models to Inform Radiosensitization Schedule. Pharmaceutics, 2022, 14, 667.	2.0	2
43	3D Cancer Models on Hydrogels. , 2016, , 207-256.		1
44	22â€3: <i>Distinquished Student Paper:</i> Flexible Quantum Dot Light Emitting Devices for Photomedicine. Digest of Technical Papers SID International Symposium, 2018, 49, 275-278.	0.1	1
45	Photodynamic Therapy of Oral Cavity Tumors in Low Resource Settings: Technology Development, Feasibility and Evaluation in Patients. , 2019, , .		1
46	68â€2: <i>Distinguished Student Paper</i> : Quantum Dot Light Emitting Devices (QLEDs) for Photomedical Applications. Digest of Technical Papers SID International Symposium, 2017, 48, 1001-1003.	0.1	0
47	Cellular pH and PI3K signaling as determinants of Protoporphyrin IX conversion and ALA PDT response. , 2018, , .		0
48	Special Section Guest Editorial: Photodynamic Therapy. Journal of Biomedical Optics, 2020, 25, 1.	1.4	0
49	Photodynamic stromal depletion (PSD) improves tumor response to PDT and enhances nanoparticle drug delivery in 3D co-culture models of pancreatic ductal adenocarcinoma (PDAC). , 2022, , .		0
50	Plasmonic Nanoparticles for Enhancement of Image-Guided Phototherapy. , 2022, , 181-204.		0