Muhammad I Asghar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8884747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel LaFe2O4 spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode. Journal of Rare Earths, 2023, 41, 413-421.	2.5	13
2	A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renewable and Sustainable Energy Reviews, 2022, 161, 112339.	8.2	116
3	Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells. Renewable Energy, 2022, 196, 901-911.	4.3	22
4	Coking resistant Ni–La0.8Sr0.2FeO3 composite anode improves the stability of syngas-fueled SOFC. International Journal of Hydrogen Energy, 2021, 46, 9809-9817.	3.8	15
5	Investigation of factors affecting the performance of a single-layer nanocomposite fuel cell. Catalysis Today, 2021, 364, 104-110.	2.2	9
6	Novel Perovskite Semiconductor Based on Co/Fe-Codoped LBZY (La _{0.5} Ba _{0.5}) Tj ETQq0 Electrolyte in Ceramic Fuel Cells. ACS Applied Energy Materials, 2021, 4, 5798-5808.	0 0 rgBT 2.5	Overlock 10 36
7	Low-temperature solid oxide fuel cells based on Tm-doped SrCeO2-δ semiconductor electrolytes. Materials Today Energy, 2021, 20, 100661.	2.5	17
8	Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3â^î´ semiconductor electrolyte for boosting solid oxide fuel cell performance. Renewable Energy, 2021, 172, 336-349.	4.3	26
9	Low temperature ceramic fuel cells employing lithium compounds: A review. Journal of Power Sources, 2021, 503, 230070.	4.0	26
10	Advanced LT-SOFC Based on Reconstruction of the Energy Band Structure of the LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ –Sm _{0.2} Ce _{0.8<!--<br-->Heterostructure for Fast Ionic Transport. ACS Applied Energy Materials, 2021, 4, 8922-8932.}	/s₂ubs>O <si< td=""><td>ub»2-l´</td></si<>	ub»2-l´
11	Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell. International Journal of Hydrogen Energy, 2021, 46, 33969-33977.	3.8	28
12	Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructure. Applied Catalysis B: Environmental, 2021, 298, 120503.	10.8	78
13	Semiconductor Nb-Doped SrTiO _{3â~î´} Perovskite Electrolyte for a Ceramic Fuel Cell. ACS Applied Energy Materials, 2021, 4, 365-375.	2.5	30
14	Electrochemical Properties of a Dual-Ion Semiconductor-Ionic Co _{0.2} Zn _{0.8} O-Sm _{0.20} Ce _{0.80} O _{2â^î^} Composite for a High-Performance Low-Temperature Solid Oxide Fuel Cell. ACS Applied Energy Materials 2021 4 194-207	2.5	21
15	Systematic Analysis on the Effect of Sintering Temperature for Optimized Performance of LiNiZnO-GdCeO-LiCO-NaCO-KCO Based 3D Printed Single-Layer Ceramic Fuel Cell. Nanomaterials, 2021, 11,	1.9	0
16	Systematic Analysis on the Effect of Sintering Temperature for Optimized Performance of Li0.15Ni0.45Zn0.4O2-Gd0.2Ce0.8O2-Li2CO3-Na2CO3-K2CO3 Based 3D Printed Single-Layer Ceramic Fuel Cell. Nanomaterials, 2021, 11, 2180.	1.9	2
17	Nanocrystalline Surface Layer of WO3 for Enhanced Proton Transport during Fuel Cell Operation. Crystals, 2021, 11, 1595.	1.0	7
18	Intriguing electrochemistry in low-temperature single layer ceramic fuel cells based on CuFe2O4. International Journal of Hydrogen Energy, 2020, 45, 24083-24092.	3.8	8

#	Article	IF	CITATIONS
19	Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceramics International, 2020, 46, 29290-29296.	2.3	23
20	Application of a Triple-Conducting Heterostructure Electrolyte of Ba _{0.5} Sr _{0.5} Co _{0.1} Fe _{0.7} Zr _{0.1} Y _{0.1} O and Ca _{0.04} Ce _{0.80} Sm _{0.16} O _{2â^{^1}Î} in a High-Performance Low-Temperature Solid Oxide Fuel Cell. ACS Applied Materials & amp; Interfaces, 2020, 12, 35071-35080.	_{3â^' 4.0}	δ{∕sub>
21	The effect of dodecylammonium chloride on the film morphology, crystallinity, and performance of lead-free Bi-based solution-processed photovoltaics devices. Solar Energy, 2020, 207, 1356-1363.	2.9	18
22	Influence of sintering temperature on ceramic fuel cell electrolyte conductivity with lithium-compound electrode. Ceramics International, 2020, 46, 17545-17552.	2.3	19
23	Mechanism for Major Improvement in SOFC Electrolyte Conductivity When Using Lithium Compounds as Anode. ACS Applied Energy Materials, 2020, 3, 4134-4138.	2.5	39
24	Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520°C. International Journal of Hydrogen Energy, 2020, 45, 14470-14479.	3.8	52
25	Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO ₃ electrolyte. Journal of Materials Chemistry A, 2019, 7, 9638-9645.	5.2	90
26	Tri-doped ceria (M0.2Ce0.8O2-δ, M= Sm0.1, Ca0.05, Gd0.05) electrolyte for hydrogen and ethanol-based fuel cells. Journal of Alloys and Compounds, 2019, 773, 548-554.	2.8	15
27	An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceramics International, 2018, 44, 170-174.	2.3	32
28	Wide bandgap oxides for low-temperature single-layered nanocomposite fuel cell. Nano Energy, 2018, 53, 391-397.	8.2	55
29	Microscopic techniques for analysis of ceramic fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e299.	1.9	2
30	Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cells. International Journal of Hydrogen Energy, 2018, 43, 12892-12899.	3.8	18
31	High performance ceramic nanocomposite fuel cells utilizing LiNiCuZn-oxide anode based on slurry method. International Journal of Hydrogen Energy, 2018, 43, 12797-12802.	3.8	13
32	Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Frontiers of Chemical Science and Engineering, 2018, 12, 162-173.	2.3	9
33	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	8.2	345
34	High conductive (LiNaK) 2 CO 3 Ce 0.85 Sm 0.15 O 2 electrolyte compositions for IT-SOFC applications. International Journal of Hydrogen Energy, 2017, 42, 20904-20909.	3.8	29
35	Advanced low-temperature ceramic nanocomposite fuel cells using ultra high ionic conductivity electrolytes synthesized through freeze-dried method and solid-route. Materials Today Energy, 2017, 5, 338-346.	2.5	38
36	A hybrid lithium-ion battery model for system-level analyses. International Journal of Energy Research, 2016, 40, 1576-1592.	2.2	14

MUHAMMAD I ASGHAR

#	Article	IF	CITATIONS
37	Intriguing Photochemistry of the Additives in the Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 27768-27781.	1.5	10
38	Improving catalyst stability in nano-structured solar and fuel cells. Catalysis Today, 2016, 259, 259-265.	2.2	17
39	Investigation of LiNiCuZn-oxide electrodes prepared by different methods: Synthesis, characterization and properties for ceramic carbonate composite fuel cells. International Journal of Hydrogen Energy, 2016, 41, 7609-7613.	3.8	9
40	Analysis of dye degradation products and assessment of the dye purity in dye-sensitized solar cells. Rapid Communications in Mass Spectrometry, 2015, 29, 2245-2251.	0.7	8
41	Photovoltaic properties of dye sensitised solar cells using TiO 2 nanotube arrays for photoanodes: Role of hydrochloric acid treatment. Applied Surface Science, 2015, 355, 256-261.	3.1	14
42	Rediscovering a Key Interface in Dye-Sensitized Solar Cells: Guanidinium and Iodine Competition for Binding Sites at the Dye/Electrolyte Surface. Journal of the American Chemical Society, 2014, 136, 7286-7294.	6.6	43
43	Effect of electrolyte bleaching on the stability and performance of dye solar cells. Physical Chemistry Chemical Physics, 2014, 16, 6092.	1.3	50
44	Do Counter Electrodes on Metal Substrates Work with Cobalt Complex Based Electrolyte in Dye Sensitized Solar Cells?. Journal of the Electrochemical Society, 2013, 160, H132-H137.	1.3	32
45	Comparison of Plastic Based Counter Electrodes for Dye Sensitized Solar Cells. Journal of the Electrochemical Society, 2012, 159, H656-H661.	1.3	12
46	Effect of molecular filtering and electrolyte composition on the spatial variation in performance of dye solar cells. Journal of Electroanalytical Chemistry, 2012, 664, 63-72.	1.9	19
47	In situ image processing method to investigate performance and stability of dye solar cells. Solar Energy, 2012, 86, 331-338.	2.9	47
48	Charge Transport and Photocurrent Generation Characteristics in Dye Solar Cells Containing Thermally Degraded N719 Dye Molecules. Journal of Physical Chemistry C, 2011, 115, 15598-15606.	1.5	39
49	Review of materials and manufacturing options for large area flexible dye solar cells. Renewable and Sustainable Energy Reviews, 2011, 15, 3717-3732.	8.2	185
50	Stabilization of metal counter electrodes for dye solar cells. Journal of Electroanalytical Chemistry, 2011, 653, 93-99.	1.9	32
51	Experimental study of iron redistribution between bulk defects and boron doped layer in silicon wafers. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2430-2436.	0.8	2
52	A carbon gel catalyst layer for the roll-to-roll production of dye solar cells. Carbon, 2011, 49, 528-532.	5.4	36
53	Review of stability for advanced dye solar cells. Energy and Environmental Science, 2010, 3, 418.	15.6	260
54	As-grown iron precipitates and gettering in multicrystalline silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 248-252.	1.7	16

#	Article	IF	CITATIONS
55	Gettering in silicon-on-insulator wafers with polysilicon layer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 259-263.	1.7	6
56	Effect of internal gettering of iron on electrical characteristics of devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 269-273.	1.7	0
57	Competitive iron gettering between internal gettering sites and boron implantation in CZ-silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 224-227.	1.7	6
58	Gettering of iron in silicon by boron implantation. Journal of Materials Science: Materials in Electronics, 2008, 19, 41-45.	1.1	13
59	Modeling boron diffusion gettering of iron in silicon solar cells. Applied Physics Letters, 2008, 92, 021902.	1.5	21
60	Effect of Oxygen in Low Temperature Boron and Phosphorus Diffusion Gettering of Iron in Czochralski-Grown Silicon. Solid State Phenomena, 0, 156-158, 395-400.	0.3	1