
Dawood Elhamifar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8884246/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pd-containing magnetic periodic mesoporous organosilica nanocomposite as an efficient and highly recoverable catalyst. Scientific Reports, 2022, 12, 7970.	3.3	6
2	Ru-containing magnetic yolk–shell structured nanocomposite: a powerful, recoverable and highly durable nanocatalyst. RSC Advances, 2021, 11, 10243-10252.	3.6	6
3	Ionic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surfaces and Interfaces, 2021, 23, 100946.	3.0	17
4	Self-assembled ionic liquid based organosilica-titania: A novel and efficient catalyst for green epoxidation of alkenes. Journal of Organometallic Chemistry, 2021, 940, 121787.	1.8	8
5	Coreâ€shell structured magnetite silicaâ€supported hexatungstate: A novel and powerful nanocatalyst for the synthesis of biologically active pyrazole derivatives. Applied Organometallic Chemistry, 2021, 35, e6409.	3.5	4
6	Ag2CO3 containing magnetic nanocomposite as a powerful and recoverable catalyst for Knoevenagel condensation. Scientific Reports, 2021, 11, 18736.	3.3	9
7	Yolk–shell structured magnetic mesoporous silica: a novel and highly efficient adsorbent for removal of methylene blue. Scientific Reports, 2021, 11, 23259.	3.3	16
8	Core–shell structured magnetic mesoporous silica supported Schiff-base/Pd: an efficacious and reusable nanocatalyst. New Journal of Chemistry, 2020, 44, 3445-3454.	2.8	17
9	An efficient and heterogeneous Pd-containing modified graphene oxide catalyst for preparation of biaryl compounds. Heliyon, 2020, 6, e03741.	3.2	9
10	Core–shell structured magnetic silica supported propylamine/molybdate complexes: an efficient and magnetically recoverable nanocatalyst. New Journal of Chemistry, 2019, 43, 12283-12291.	2.8	24
11	Phenylene and Isatin Based Bifunctional Mesoporous Organosilica Supported Schiff-Base/Manganese Complex: An Efficient and Recoverable Nanocatalyst. Catalysis Letters, 2019, 149, 619-628.	2.6	14
12	Graphene oxide supported Schiff-base/palladium complex: An efficient and recoverable catalyst for Suzuki–Miyaura coupling reaction. Polyhedron, 2019, 170, 530-536.	2.2	24
13	Magnetic nanoporous MCMâ€41 supported ionic liquid/palladium complex: An efficient nanocatalyst with high recoverability. Applied Organometallic Chemistry, 2019, 33, e4862.	3.5	32
14	Magnetic iron oxide/phenylsulfonic acid: A novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. Journal of Colloid and Interface Science, 2018, 511, 392-401.	9.4	58
15	Propylamine-containing magnetic ethyl-based organosilica with a core–shell structure: an efficient and highly stable nanocatalyst. New Journal of Chemistry, 2018, 42, 10741-10750.	2.8	16
16	Tungstic acid-functionalized MCM-41 as a novel mesoporous solid acid catalyst for the one-pot synthesis of new pyrrolo[2,1- <i>a</i>]isoquinolines. New Journal of Chemistry, 2018, 42, 12811-12816.	2.8	20
17	Surfactantâ€directed oneâ€pot preparation of novel Tiâ€containing mesomaterial with improved catalytic activity and reusability. Applied Organometallic Chemistry, 2018, 32, e4471.	3.5	9
18	Magnetic nanoparticles supported Schiff-base/copper complex: An efficient nanocatalyst for preparation of biologically active 3,4-dihydropyrimidinones. Journal of Colloid and Interface Science, 2017, 504, 268-275.	9.4	43

#	Article	IF	CITATIONS
19	Alkyl-imidazolium based organosilica supported Fe/porphyrin complex: As novel, highly efficient and reusable catalyst for the unsymmetrical Hantzsch reaction. Journal of Colloid and Interface Science, 2017, 499, 120-127.	9.4	27
20	Highly ordered mesoporous organosilica–titania with ionic liquid framework as very efficient nanocatalyst for green oxidation of alcohols. Journal of Colloid and Interface Science, 2017, 500, 212-219.	9.4	27
21	Nickel containing ionic liquid based ordered nanoporous organosilica: a powerful and recoverable catalyst for synthesis of polyhydroquinolines. RSC Advances, 2017, 7, 54789-54796.	3.6	25
22	Phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper: An efficient nanocatalyst for clean production of polyhydroquinolines. Journal of Colloid and Interface Science, 2017, 505, 1177-1184.	9.4	22
23	Thiopropyl-containing ionic liquid based periodic mesoporous organosilica as a novel and efficient adsorbent for the removal of Hg(<scp>ii</scp>) and Pb(<scp>ii</scp>) ions from aqueous solutions. RSC Advances, 2016, 6, 58658-58666.	3.6	14
24	Amine-functionalized ionic liquid-based mesoporous organosilica as a highly efficient nanocatalyst for the Knoevenagel condensation. Catalysis Science and Technology, 2016, 6, 4318-4326.	4.1	83
25	Preparation of Ironâ€Containing Schiff Base and Ionic Liquid Based Bifunctional Periodic Mesoporous Organosilica and Its Application in the Synthesis of 3,4â€Đihydropyrimidinones. ChemPlusChem, 2015, 80, 820-826.	2.8	18
26	Tungstate Supported on Periodic Mesoporous Organosilica with Imidazolium Framework as an Efficient and Recyclable Catalyst for the Selective Oxidation of Sulfides. ChemPlusChem, 2015, 80, 990-999.	2.8	46
27	Ionic liquid-based ordered mesoporous organosilica-supported copper as a novel and efficient nanocatalyst for the one-pot synthesis of Biginelli products. Microporous and Mesoporous Materials, 2015, 204, 269-275.	4.4	54
28	Manganeseâ€Containing Periodic Mesoporous Organosilica with Ionicâ€Liquid Framework (Mn@PMOâ€IL): A Powerful, Durable, and Reusable Nanocatalyst for the Biginelli Reaction. Chemistry - A European Journal, 2014, 20, 3212-3217.	3.3	59
29	Synthesis of Sulfonic Acid Containing Ionicâ€Liquidâ€Based Periodic Mesoporous Organosilica and Study of Its Catalytic Performance in the Esterification of Carboxylic Acids. ChemPlusChem, 2014, 79, 1147-1152.	2.8	38
30	Ionic Liquid and Sulfonic Acid Based Bifunctional Periodic Mesoporous Organosilica (BPMO–IL–SO ₃ H) as a Highly Efficient and Reusable Nanocatalyst for the Biginelli Reaction. ChemCatChem, 2014, 6, 2593-2599.	3.7	75
31	Palladium ontaining Ionic Liquidâ€Based Ordered Mesoporous Organosilica: An Efficient and Reusable Catalyst for the Heck Reaction. ChemCatChem, 2013, 5, 2418-2424.	3.7	62
32	Synthesis and Characterization of Alkyl″midazoliumâ€Based Periodic Mesoporous Organosilicas: A Versatile Host for the Immobilization of Perruthenate (RuO ₄ ^{â^'}) in the Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2012, 18, 13520-13530.	3.3	84
33	Palladium containing periodic mesoporous organosilica with imidazolium framework (Pd@PMO-IL): an efficient and recyclable catalyst for the aerobic oxidation of alcohols. Organic and Biomolecular Chemistry, 2011, 9, 7420.	2.8	85
34	Ordered Mesoporous Organosilica with Ionicâ€Liquid Framework: An Efficient and Reusable Support for the Palladiumâ€Catalyzed Suzuki–Miyaura Coupling Reaction in Water. Chemistry - A European Journal, 2010, 16, 8047-8053.	3.3	207