Frederik Börnke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8884243/publications.pdf

Version: 2024-02-01

49 papers 3,158 citations

32 h-index 50 g-index

57 all docs

57 docs citations

57 times ranked

4407 citing authors

#	Article	IF	CITATIONS
1	The <i>Xanthomonas</i> type-III effector XopS stabilizes <i>Ca</i> WRKY40a to regulate defense responses and stomatal immunity in pepper (<i>Capsicum annuum</i>). Plant Cell, 2022, 34, 1684-1708.	3.1	24
2	A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO Journal, 2022, 41, .	3.5	36
3	A Remorin from <i>Nicotiana benthamiana</i> Interacts with the <i>Pseudomonas</i> Type-III Effector Protein HopZ1a and is Phosphorylated by the Immune-Related Kinase PBS1. Molecular Plant-Microbe Interactions, 2019, 32, 1229-1242.	1.4	24
4	Identification and Characterization of Three Epithiospecifier Protein Isoforms in Brassica oleracea. Frontiers in Plant Science, 2019, 10, 1552.	1.7	26
5	Thigmomorphogenesis – Control of plant growth by mechanical stimulation. Scientia Horticulturae, 2018, 234, 344-353.	1.7	41
6	STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1. Plant Physiology, 2018, 176, 1773-1792.	2.3	31
7	A Proteomic Approach Suggests Unbalanced Proteasome Functioning Induced by the Growth-Promoting Bacterium Kosakonia radicincitans in Arabidopsis. Frontiers in Plant Science, 2017, 8, 661.	1.7	11
8	Hop/Sti1 – A Two-Faced Cochaperone Involved in Pattern Recognition Receptor Maturation and Viral Infection. Frontiers in Plant Science, 2017, 8, 1754.	1.7	25
9	Ubiquitin Proteasome Activity Measurement in Total Plant Extracts. Bio-protocol, 2017, 7, e2532.	0.2	7
10	The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by <i>Pseudomonas</i> Type III Effectors. Plant Physiology, 2016, 172, 1941-1958.	2.3	94
11	Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Scientific Reports, 2016, 6, 31697.	1.6	252
12	A protein–protein interaction network linking the energy-sensor kinase SnRK1 to multiple signaling pathways in Arabidopsis thaliana. Current Plant Biology, 2016, 5, 36-44.	2.3	61
13	The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid. Frontiers in Plant Science, 2015, 6, 599.	1.7	7
14	The <i>Xanthomonas campestris</i> Type III Effector XopJ Proteolytically Degrades Proteasome Subunit RPT6. Plant Physiology, 2015, 168, 107-119.	2.3	48
15	Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Frontiers in Plant Science, 2014, 5, 736.	1.7	28
16	The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Frontiers in Plant Science, 2014, 5, 54.	1.7	72
17	Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 2405-2413.	2.4	44
18	Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. Journal of Experimental Botany, 2014, 65, 5217-5229.	2.4	50

#	Article	IF	CITATIONS
19	HopZ4 from Pseudomonas syringae, a Member of the HopZ Type III Effector Family from the YopJ Superfamily, Inhibits the Proteasome in Plants. Molecular Plant-Microbe Interactions, 2014, 27, 611-623.	1.4	56
20	The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence. PLoS Pathogens, 2013, 9, e1003427.	2.1	107
21	A Bacterial Acetyltransferase Destroys Plant Microtubule Networks and Blocks Secretion. PLoS Pathogens, 2012, 8, e1002523.	2.1	178
22	SseF, a type III effector protein from the mammalian pathogen ⟨i⟩Salmonella enterica⟨li⟩, requires resistanceâ€geneâ€mediated signalling to activate cell death in the model plant ⟨i⟩Nicotiana benthamiana⟨li⟩. New Phytologist, 2012, 194, 1046-1060.	3.5	38
23	OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology, 2012, 12, 245.	1.6	47
24	Detecting functional groups of Arabidopsis mutants by metabolic profiling and evaluation of pleiotropic responses. Frontiers in Plant Science, 2011, 2, 82.	1.7	7
25	A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells Â. Plant Cell, 2011, 23, 2422-2439.	3.1	127
26	Two Novel Proteins, MRL7 and Its Paralog MRL7-L, Have Essential but Functionally Distinct Roles in Chloroplast Development and Are Involved in Plastid Gene Expression Regulation in Arabidopsis. Plant and Cell Physiology, 2011, 52, 1017-1030.	1.5	38
27	Altering Trehalose-6-Phosphate Content in Transgenic Potato Tubers Affects Tuber Growth and Alters Responsiveness to Hormones during Sprouting Á Á. Plant Physiology, 2011, 156, 1754-1771.	2.3	138
28	Tailoring plant metabolism for the production of novel polymers and platform chemicals. Current Opinion in Plant Biology, 2010, 13, 353-361.	3.5	35
29	Inâ€depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the GUNâ€type of plastid signalling. Physiologia Plantarum, 2010, 138, 503-519.	2.6	80
30	Plastidial Thioredoxin $\langle i\rangle z \langle i\rangle$ Interacts with Two Fructokinase-Like Proteins in a Thiol-Dependent Manner: Evidence for an Essential Role in Chloroplast Development in $\langle i\rangle$ Arabidopsis $\langle i\rangle$ and $\langle i\rangle$ Nicotiana benthamiana $\langle i\rangle$ Â Â. Plant Cell, 2010, 22, 1498-1515.	3.1	281
31	Metabolic Engineering. Biotechnology in Agriculture and Forestry, 2010, , 199-219.	0.2	4
32	Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only minor effects on respiration in leaves of transgenic tobacco plants. New Phytologist, 2009, 184, 607-618.	3.5	46
33	The <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Type III Effector Protein XopJ Inhibits Protein Secretion: Evidence for Interference with Cell Wallâ€"Associated Defense Responses. Molecular Plant-Microbe Interactions, 2009, 22, 655-664.	1.4	121
34	Largeâ€scale phenotyping of transgenic tobacco plants (<i>Nicotiana tabacum</i>) to identify essential leaf functions. Plant Biotechnology Journal, 2008, 6, 246-263.	4.1	24
35	Loss of cytosolic fructoseâ€1,6â€bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (<i>Oryza sativa</i>). Plant, Cell and Environment, 2008, 31, 1851-1863.	2.8	73
36	Capsid Protein-Mediated Recruitment of Host DnaJ-Like Proteins Is Required for <i>Potato Virus Y</i> Infection in Tobacco Plants. Journal of Virology, 2007, 81, 11870-11880.	1.5	123

#	Article	IF	CITATIONS
37	Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants. Journal of Experimental Botany, 2007, 58, 2053-2067.	2.4	70
38	RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum) Tj ETQq0 Con total soluble carbohydrate accumulation. Plant, Cell and Environment, 2007, 31, 071115091544001-???.	0 rgBT /O 2.8	verlock 10 Tf 32
39	HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase. Plant Molecular Biology, 2007, 64, 733-742.	2.0	38
40	Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Molecular Biology, 2007, 65, 615-626.	2.0	33
41	Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis, alters carbohydrate partitioning, and reduces growth. Planta, 2005, 221, 479-492.	1.6	76
42	Differential Expression of Sucrose-Phosphate Synthase Isoenzymes in Tobacco Reflects Their Functional Specialization during Dark-Governed Starch Mobilization in Source Leaves. Plant Physiology, 2005, 139, 1163-1174.	2.3	69
43	The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. Journal of Plant Physiology, 2005, 162, 161-168.	1.6	55
44	Target-based discovery of novel herbicides. Current Opinion in Plant Biology, 2004, 7, 219-225.	3.5	54
45	Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA. Plant Journal, 2003, 36, 731-740.	2.8	94
46	Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). Journal of Experimental Botany, 2003, 54, 477-488.	2.4	91
47	Potato tubers as bioreactors for palatinose production. Journal of Biotechnology, 2002, 96, 119-124.	1.9	36
48	High-level production of the non-cariogenic sucrose isomer palatinose in transgenic tobacco plants strongly impairs development. Planta, 2002, 214, 356-364.	1.6	31
49	Cloning and Characterization of the Gene Cluster for Palatinose Metabolism from the Phytopathogenic Bacterium Erwinia rhapontici. Journal of Bacteriology, 2001, 183, 2425-2430.	1.0	59