Nadka T Dintcheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8883889/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers, 2021, 13, 1229.	2.0	149
2	The role of organoclay in promoting co-continuous morphology in high-density poly(ethylene)/poly(amide) 6 blends. Polymer, 2008, 49, 1312-1322.	1.8	121
3	Effect of extrusion and photo-oxidation on polyethylene/clay nanocomposites. Polymer Degradation and Stability, 2009, 94, 1571-1588.	2.7	89
4	Formulation, characterization and optimization of the processing condition of blends of recycled polyethylene and ground tyre rubber: Mechanical and rheological analysis. Polymer Degradation and Stability, 2005, 90, 281-287.	2.7	83
5	Using organoclay to promote morphology refinement and co-continuity in high-density polyethylene/polyamide 6 blends – Effect of filler content and polymer matrix composition. Polymer, 2010, 51, 3956-3965.	1.8	82
6	Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	7.3	77
7	Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites. Materials, 2018, 11, 383.	1.3	75
8	Ionic liquids gels: Soft materials for environmental remediation. Journal of Colloid and Interface Science, 2018, 517, 182-193.	5.0	68
9	Improvement of photo-stability of LLDPE-based nanocomposites. Polymer Degradation and Stability, 2006, 91, 3208-3213.	2.7	64
10	Photochemical stabilization of linear low-density polyethylene/clay nanocomposites: Towards durable nanocomposites. Polymer Degradation and Stability, 2008, 93, 1776-1780.	2.7	64
11	EVA Copolymer Based Nanocomposites. Macromolecular Materials and Engineering, 2002, 287, 909-914.	1.7	61
12	Intercalation effects in LDPE/o-montmorillonites nanocomposites. European Polymer Journal, 2007, 43, 328-335.	2.6	61
13	Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid). Macromolecular Materials and Engineering, 2014, 299, 31-40.	1.7	60
14	Self-Sustaining Supramolecular Ionic Liquid Gels for Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 12453-12462.	3.2	58
15	Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part I: Thermal and thermo-oxidative degradation of polyamide 11. Polymer, 2015, 72, 134-141.	1.8	54
16	EVA-Montmorillonite Nanocomposites: Effect of Processing Conditions. Macromolecular Materials and Engineering, 2004, 289, 238-244.	1.7	51
17	Morphology and Properties of Polyethylene/Clay Nanocomposite Drawn Fibers. Macromolecular Materials and Engineering, 2008, 293, 83-91.	1.7	51
18	Photo-oxidation behaviour of polyethylene/multi-wall carbon nanotube composite films. Polymer Degradation and Stability, 2009, 94, 162-170.	2.7	51

#	Article	IF	CITATIONS
19	α-Tocopherol-induced radical scavenging activity in carbon nanotubes for thermo-oxidation resistant ultra-high molecular weight polyethylene-based nanocomposites. Carbon, 2014, 74, 14-21.	5.4	48
20	Anti-/Pro-Oxidant Behavior of Naturally Occurring Molecules in Polymers and Biopolymers: A Brief Review. ACS Sustainable Chemistry and Engineering, 2019, 7, 12656-12670.	3.2	48
21	The role of organoclay and matrix type in photo-oxidation of polyolefin/clay nanocomposite films. Polymer Degradation and Stability, 2009, 94, 712-718.	2.7	47
22	Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites. EXPRESS Polymer Letters, 2012, 6, 561-571.	1.1	44
23	Effects of organoclay on morphology and properties of nanocomposites based on LDPE/PAâ€6 blends without and with SEBSâ€∢i>gâ€MA compatibilizer. Polymer Engineering and Science, 2009, 49, 1187-1197.	1.5	43
24	On the interlayer spacing collapse of Cloisite® 30B organoclay. Polymer Degradation and Stability, 2011, 96, 823-832.	2.7	43
25	Selective localization of organoclay and effects on the morphology and mechanical properties of LDPE/PA11 blends with distributed and coâ€continuous morphology. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 600-609.	2.4	41
26	Recycling of the "light fraction―from municipal post-consumer plastics: effect of adding wood fibers. Polymers for Advanced Technologies, 1999, 10, 607-614.	1.6	40
27	Durability of a starch-based biodegradable polymer. Polymer Degradation and Stability, 2007, 92, 630-634.	2.7	40
28	Comparative study of different maleic anhydride grafted compatibilizer precursors towards LDPE/PA6 blends: Morphology and mechanical properties. Polymer, 2005, 46, 8054-8061.	1.8	39
29	Thermo-oxidative stabilization of poly(lactic acid) with antioxidant intercalated layered double hydroxides. Polymer Degradation and Stability, 2016, 133, 92-100.	2.7	39
30	Photo-oxidation behaviour of polyethylene/polyamide 6 blends filled with organomodified clay: Improvement of the photo-resistance through morphology modification. Polymer Degradation and Stability, 2010, 95, 527-535.	2.7	38
31	Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part II: Thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites. Polymer, 2015, 73, 102-110.	1.8	38
32	Environmentally Friendly Eutectogels Comprising <scp>lâ€a</scp> mino Acids and Deep Eutectic Solvents: Efficient Materials for Wastewater Treatment. ChemPlusChem, 2020, 85, 301-311.	1.3	38
33	Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites. Composites Part B: Engineering, 2015, 82, 196-204.	5.9	37
34	Concentration-dependent anti-/pro-oxidant activity of natural phenolic compounds in bio-polyesters. Polymer Degradation and Stability, 2017, 142, 21-28.	2.7	37
35	Supramolecular Hydro―and Ionogels: A Study of Their Properties and Antibacterial Activity. Chemistry - A European Journal, 2017, 23, 16297-16311.	1.7	37
36	Green composites of organic materials and recycled post-consumer polyethylene. Polymer International, 2004, 53, 1888-1891.	1.6	36

#	Article	IF	CITATIONS
37	Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes. Polymer Degradation and Stability, 2015, 115, 129-137.	2.7	36
38	Characterization and reprocessing of greenhouse films. Polymer Degradation and Stability, 2001, 72, 141-146.	2.7	35
39	Effect of different matrices and nanofillers on the rheological behavior of polymer lay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 344-355.	2.4	35
40	Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites. Polymer Degradation and Stability, 2015, 122, 88-101.	2.7	35
41	Effect of nano zinc oxide as UV stabilizer on the weathering performance of wood-polyethylene composite. Polymer Degradation and Stability, 2016, 133, 85-91.	2.7	35
42	Effects of filler type and processing apparatus on the properties of the recycled ? light fraction? from municipal post-consumer plastics. Polymers for Advanced Technologies, 2001, 12, 552-560.	1.6	34
43	The role of filler type in the photoâ€oxidation behaviour of micro―and nanoâ€filled polypropylene. Polymer International, 2011, 60, 1107-1116.	1.6	32
44	Amino Acid-Based Cholinium Ionic Liquids as Sustainable Catalysts for PET Depolymerization. ACS Sustainable Chemistry and Engineering, 2021, 9, 15157-15165.	3.2	32
45	Eva copolymer-based nanocomposites: Rheological behavior under shear and isothermal and non-isothermal elongational flow. Polymer Testing, 2006, 25, 701-708.	2.3	31
46	Processing and Properties of Biopolymer/Polyhydroxyalkanoates Blends. Journal of Polymers and the Environment, 2012, 20, 267-272.	2.4	31
47	Structure and dynamics of polyethylene/clay films. Journal of Applied Polymer Science, 2006, 102, 4749-4758.	1.3	29
48	Organoclay Nanocomposites from Ethylene–Acrylic Acid Copolymers. Macromolecular Materials and Engineering, 2006, 291, 1208-1225.	1.7	29
49	Reprocessing and restabilization of greenhouse films. Polymer Degradation and Stability, 2002, 75, 459-464.	2.7	28
50	Effect of elongational flow on morphology and properties of polymer/CNTs nanocomposite fibers. Polymers for Advanced Technologies, 2011, 22, 1612-1619.	1.6	28
51	Natural Compounds as Sustainable Additives for Biopolymers. Polymers, 2020, 12, 732.	2.0	28
52	Photooxidative behaviour of polyethylene/polyamide-6 blends. Polymer Degradation and Stability, 2010, 95, 522-526.	2.7	26
53	Natural compounds as light stabilizer for a starch-based biodegradable polymer. Journal of Polymer Engineering, 2014, 34, 441-449.	0.6	26
54	New phosphazene-based chain extenders containing allyl and epoxide groups. Designed Monomers and Polymers, 2003, 6, 245-266.	0.7	24

NADKA T DINTCHEVA

#	Article	IF	CITATIONS
55	UV-stabilisation of polystyrene-based nanocomposites provided by polyhedral oligomeric silsesquioxanes (POSS). Polymer Degradation and Stability, 2012, 97, 2313-2322.	2.7	24
56	Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review. Polymers, 2021, 13, 3817.	2.0	23
57	A new equipment to measure the combined effects of humidity, temperature, mechanical stress and UV exposure on the creep behaviour of polymers. Polymer Testing, 2008, 27, 49-54.	2.3	22
58	A simple method to interpret the rheological behaviour of intercalated polymer nanocomposites. Composites Part B: Engineering, 2016, 98, 382-388.	5.9	22
59	Photooxidation and stabilization of photooxidized polyethylene and of its monopolymer blends. Journal of Applied Polymer Science, 2004, 91, 2244-2255.	1.3	21
60	Rheological Response of Polyethylene/Clay Nanocomposites to Annealing Treatment. Macromolecular Chemistry and Physics, 2007, 208, 2533-2541.	1.1	21
61	Improvement of the photo-stability of polystyrene-block-polybutadiene-block-polystyrene through carbon nanotubes. Polymer Degradation and Stability, 2015, 118, 24-32.	2.7	21
62	Functionalization of aliphatic polyesters by nitroxide radical coupling. Polymer Chemistry, 2014, 5, 5656.	1.9	20
63	Pluronic nanoparticles as anti-oxidant carriers for polymers. Polymer Degradation and Stability, 2016, 134, 194-201.	2.7	20
64	Re-Gradation of Photo-Oxidized Post-Consumer Greenhouse Films. Macromolecular Rapid Communications, 2005, 26, 361-364.	2.0	19
65	On the Role of Extensional Flow in Morphology and Property Modifications of MWCNT/Polyamideâ€Based Fibers. Macromolecular Materials and Engineering, 2011, 296, 645-657.	1.7	19
66	Effect of the nanotube aspect ratio and surface functionalization on the morphology and properties of multiwalled carbon nanotube polyamideâ€based fibers. Journal of Applied Polymer Science, 2013, 129, 2479-2489.	1.3	19
67	Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites. European Polymer Journal, 2016, 75, 525-537.	2.6	19
68	Morphology Modification of Polyethylene/Clay Nanocomposite Samples under Convergent Flow. Macromolecular Materials and Engineering, 2009, 294, 575-581.	1.7	18
69	Accelerated weathering of PP based nanocomposites: Effect of the presence of maleic anhydryde grafted polypropylene. EXPRESS Polymer Letters, 2013, 7, 703-715.	1.1	18
70	Interaction in POSS-poly(ethylene-co-acrylic acid) nanocomposites. Polymer Journal, 2014, 46, 160-166.	1.3	18
71	Tunable radical scavenging activity of carbon nanotubes through sonication. Carbon, 2016, 107, 240-247.	5.4	18
72	Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers, 2020, 12, 1973.	2.0	18

#	Article	IF	CITATIONS
73	An insight into the interaction between functionalized thermoplastic elastomer and layered double hydroxides through rheological investigations. Composites Part B: Engineering, 2018, 139, 47-54.	5.9	17
74	Competition between chain scission and branching formation in the processing of highâ€density polyethylene: Effect of processing parameters and of stabilizers. Polymer Engineering and Science, 2009, 49, 1316-1325.	1.5	16
75	Advanced ultraâ€high molecular weight polyethylene/antioxidantâ€functionalized carbon nanotubes nanocomposites with improved thermoâ€oxidative resistance. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
76	Filmability and properties of compatibilized PA6/LDPE blends. Polymer Engineering and Science, 2005, 45, 1297-1302.	1.5	14
77	Thermoâ€oxidative stabilization of poly(lactic acid)â€based nanocomposites through the incorporation of clay with inâ€built antioxidant activity. Journal of Applied Polymer Science, 2017, 134, .	1.3	14
78	Novel strategic approach for the thermo- and photo- oxidative stabilization of polyolefin/clay nanocomposites. Polymer Degradation and Stability, 2017, 145, 41-51.	2.7	14
79	Recycled (Bio)Plastics and (Bio)Plastic Composites: A Trade Opportunity in a Green Future. Polymers, 2022, 14, 2038.	2.0	14
80	Nano-hybrids based on quercetin and carbon nanotubes with excellent anti-oxidant activity. Materials Letters, 2016, 180, 7-10.	1.3	13
81	Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction. Polymer International, 2016, 65, 48-56.	1.6	13
82	Grafting of Hindered Phenol Groups onto Ethylene/α-Olefin Copolymer by Nitroxide Radical Coupling. Polymers, 2017, 9, 670.	2.0	13
83	Assessment of pro-oxidant activity of natural phenolic compounds in bio-polyesters. Polymer Degradation and Stability, 2018, 152, 280-288.	2.7	13
84	Taking advantage of the functional synergism between carbon nanotubes and graphene nanoplatelets to obtain polypropylene-based nanocomposites with enhanced oxidative resistance. European Polymer Journal, 2020, 133, 109796.	2.6	13
85	Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection. Molecules, 2021, 26, 3468.	1.7	13
86	Time–carbonyl groups equivalence in photo-oxidative aging of virgin/recycled polymer blends. Plastics, Rubber and Composites, 2004, 33, 184-186.	0.9	12
87	Effect of the additive level and of the processing temperature on the re-building of post-consumer pipes from polyethylene blends. European Polymer Journal, 2007, 43, 2947-2955.	2.6	12
88	Effect of different dispersing additives on the morphology and the properties of polyethylene-based nanocomposite films. EXPRESS Polymer Letters, 2011, 5, 923-935.	1.1	12
89	Slow Pyrolysis as a Method for Biochar Production from Carob Waste: Process Investigation and Products' Characterization. Energies, 2021, 14, 8457.	1.6	12
90	Influence of the e-beam irradiation and photo-oxidation aging on the structure and properties of LDPE-OMMT nanocomposite films. Radiation Physics and Chemistry, 2012, 81, 432-436.	1.4	11

#	Article	IF	CITATIONS
91	Highâ€performance thermoplastic elastomers/carbon nanotubes nanocomposites: Mechanical behavior, rheology, and durability. Polymer Composites, 2017, 38, E381.	2.3	11
92	Processability and Properties of Re-Graded, Photo-Oxidized Post-Consumer Greenhouse Films. Macromolecular Materials and Engineering, 2005, 290, 970-975.	1.7	10
93	Rheological behavior of PAN-based electrolytic gel containing tetrahexylammonium and magnesium iodide for photoelectrochemical applications. Rheologica Acta, 2013, 52, 881-889.	1.1	10
94	Quercetin as natural stabilizing agent for bio-polymer. AIP Conference Proceedings, 2014, , .	0.3	10
95	Biopolyester-Based Systems Containing Naturally Occurring Compounds with Enhanced Thermo-Oxidative Stability. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 455-462.	0.7	10
96	Ionic liquid gels and antioxidant carbon nanotubes: Hybrid soft materials with improved radical scavenging activity. Journal of Colloid and Interface Science, 2019, 556, 628-639.	5.0	10
97	Boosting the methanolysis of polycarbonate by the synergy between ultrasound irradiation and task specific ionic liquids. Green Chemistry, 2021, 23, 9957-9967.	4.6	10
98	Photo-re-stabilisation of recycled post-consumer films from greenhouses. Polymer Degradation and Stability, 2004, 85, 1041-1044.	2.7	9
99	On the effectiveness of different additives and concentrations on the re-building of the molecular structure of degraded polyethylene. Polymer Degradation and Stability, 2006, 91, 3110-3116.	2.7	9
100	Thermo-Mechanical Degradation of LDPE-Based Nanocomposites. Macromolecular Materials and Engineering, 2007, 292, 855-862.	1.7	9
101	Effect of Nanodiamonds on Structure and Durability of Polyethylene Oxide-Based Nanocomposites. Journal of Nanomaterials, 2016, 2016, 1-9.	1.5	9
102	POSS Grafting on Polyethylene and Maleic Anhydrideâ€Crafted Polyethylene by Oneâ€Step Reactive Melt Mixing. Advances in Polymer Technology, 2018, 37, 349-357.	0.8	9
103	Pro-Degradant Activity of Naturally Occurring Compounds on Polyethylene in Accelerate Weathering Conditions. Materials, 2019, 12, 195.	1.3	9
104	Effect of Short-Term and UV Irradiation Aging on the Behaviour of SBS-Modified Bitumen. Sustainability, 2022, 14, 6915.	1.6	9
105	Advanced nano-hybrids for thermo-oxidative-resistant nanocomposites. Journal of Materials Science, 2016, 51, 6955-6966.	1.7	8
106	Carbon nanotubes-based nanohybrids for multifunctional nanocomposites. Journal of King Saud University - Science, 2017, 29, 502-509.	1.6	8
107	Improvement of oxidation resistance of polymer-based nanocomposites through sonication of carbonaceous nanoparticles. Ultrasonics Sonochemistry, 2020, 61, 104807.	3.8	8
108	Thermomechanical degradation of filled polypropylene. Macromolecular Symposia, 2003, 194, 277-286.	0.4	7

#	Article	IF	CITATIONS
109	Thermo- and photo-oxidative stability and improved processability of polyamide stabilized with a new functional additive. Polymers for Advanced Technologies, 2005, 16, 357-361.	1.6	7
110	Recycling ground tire rubber (GTR) scraps as highâ€impact filler of <i>in situ</i> produced polyketone matrix. Polymers for Advanced Technologies, 2014, 25, 1060-1068.	1.6	7
111	Rheological Percolation Threshold in High-Viscosity Polymer/CNTs Nanocomposites. Journal of Engineering Mechanics - ASCE, 2017, 143, .	1.6	7
112	Using matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry for the characterization of functionalized carbon nanotubes. Rapid Communications in Mass Spectrometry, 2013, 27, 1359-1366.	0.7	6
113	Progress in Understanding of the Interactions between Functionalized Polyolefins and Organoâ€ <scp>L</scp> ayered Double Hydroxides. Macromolecular Reaction Engineering, 2014, 8, 122-133.	0.9	6
114	High performance composites containing perfluoropolyethers-functionalized carbon-based nanoparticles: Rheological behavior and wettability. Composites Part B: Engineering, 2016, 95, 29-39.	5.9	6
115	Double bond-functionalized POSS: dispersion and crosslinking in polyethylene-based hybrid obtained by reactive processing. Polymer Bulletin, 2016, 73, 3385-3400.	1.7	6
116	Photo-stabilization of biopolymers-based nanocomposites with UV-modified layered silicates. Polymer Degradation and Stability, 2020, 179, 109252.	2.7	6
117	Durability and Performance of Encapsulant Films for Bifacial Heterojunction Photovoltaic Modules. Polymers, 2022, 14, 1052.	2.0	6
118	Polyamide/carbonaceous particles nanocomposites fibers: Morphology and performances. Polymer Composites, 2015, 36, 1020-1028.	2.3	5
119	Silanolâ€ <scp>POSS</scp> as dispersing agents for carbon nanotubes in polyamide. Polymer Engineering and Science, 2017, 57, 588-594.	1.5	5
120	End-of-life and waste management of disposable beverage cups. Science of the Total Environment, 2021, 763, 143044.	3.9	5
121	Effect of different processing techniques and presence of antioxidant on the chitosan film performance. Journal of Vinyl and Additive Technology, 2022, 28, 343-351.	1.8	5
122	The role of the disposition of the recycled polymer on the properties of films for greenhouses coverage. Journal of Applied Polymer Science, 2011, 119, 1986-1991.	1.3	4
123	Effect of the extensional flow on the properties of oriented nanocomposite films for twist wrapping. Journal of Applied Polymer Science, 2011, 120, 2772-2779.	1.3	4
124	Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites. , 2014, , .		4
125	On the role of multi-functional polyhedral oligomeric silsesquioxane in polystyrene-zinc oxide nanocomposites. Journal of Polymer Engineering, 2015, 35, 329-337.	0.6	4
126	A Fractional-Order Model of Biopolyester Containing Naturally Occurring Compounds for Soil Stabilization. Advances in Materials Science and Engineering, 2019, 2019, 1-6.	1.0	4

NADKA Τ DINTCHEVA

#	Article	IF	CITATIONS
127	Role of Organo-Modifier and Metal Impurities of Commercial Nanoclays in the Photo- and Thermo-Oxidation of Polyamide 11 Nanocomposites. Polymers, 2020, 12, 1034.	2.0	4
128	Encapsulant polymer blend films for bifacial heterojunction photovoltaic modules: Formulation, characterization and durability. Polymer Degradation and Stability, 2021, 193, 109716.	2.7	4
129	Performances and morphology of polyamide/carbonaceous structures based fibers. , 2014, , .		3
130	Natural phenolic compounds: Anti-oxidants or pro-oxidants for biopolyesters?. AIP Conference Proceedings, 2018, , .	0.3	3
131	Low-Density Polyethylene/Polyamide/Clay Blend Nanocomposites: Effect of Morphology of Clay on Their Photooxidation Resistance. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	2
132	Film blowing of silaneâ€modified polyethylene. Journal of Applied Polymer Science, 2009, 114, 503-508.	1.3	1
133	Improved carbon nanotubes dispersion through polar dispersant agents in polyamide. AIP Conference Proceedings, 2016, , .	0.3	1
134	Polyamideâ€Based Fibers Containing Microwaveâ€Exfoliated Graphite Nanoplatelets. Advances in Polymer Technology, 2018, 37, 786-797.	0.8	1
135	Mechanical and rheological properties of polystyrene-block-polybutadiene-block-polystyrene copolymer reinforced with carbon nanotubes: effect of processing conditions. Journal of Polymer Engineering, 2018, 38, 107-117.	0.6	1
136	EFFECT OF THE ELONGATIONAL FLOW ON THE MORPHOLOGY AND ON THE PROPERTIES OF POLYETHYLENE BASED NANOCOMPOSITES. AIP Conference Proceedings, 2008, , .	0.3	0
137	EFFECT OF ORGANOCLAY ON THE MORPHOLOGY AND MECHANICAL PROPERTIES OF LDPEâ [•] •PA11 BLENDS. AIP Conference Proceedings, 2008, , .	0.3	0
138	Predicting The Photoageing And Photostabilization Of Polymer Nanocomposites. , 2010, , .		0
139	Reactive melt blending of functionalized-MW/CNTs with polyolefin. , 2012, , .		0
140	Control of endâ€ofâ€life oxygenâ€containing groups accumulation in biopolyesters through introduction of crosslinked polysaccharide particles. Polymer Engineering and Science, 2022, 62, 426-436.	1.5	0