
Geert J P L Kops

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8883000/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 2002, 419, 316-321.	13.7	1,399
2	AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature, 2000, 404, 782-787.	13.7	1,335
3	On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Reviews Cancer, 2005, 5, 773-785.	12.8	1,046
4	Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature, 1999, 398, 630-634.	13.7	1,017
5	Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015, 521, 43-47.	13.7	853
6	Cell cycle and death control: long live Forkheads. Trends in Biochemical Sciences, 2002, 27, 352-360.	3.7	631
7	The Forkhead Transcription Factor FoxO Regulates Transcription of p27 <i>Kip1</i> and Bim in Response to IL-2. Journal of Immunology, 2002, 168, 5024-5031.	0.4	549
8	Cell Cycle Inhibition by FoxO Forkhead Transcription Factors Involves Downregulation of Cyclin D. Molecular and Cellular Biology, 2002, 22, 7842-7852.	1.1	510
9	Chromosome Segregation Errors as a Cause of DNA Damage and Structural Chromosome Aberrations. Science, 2011, 333, 1895-1898.	6.0	491
10	Control of Cell Cycle Exit and Entry by Protein Kinase B-Regulated Forkhead Transcription Factors. Molecular and Cellular Biology, 2002, 22, 2025-2036.	1.1	398
11	Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8699-8704.	3.3	389
12	Inhibition of Nuclear Import by Protein Kinase B (Akt) Regulates the Subcellular Distribution and Activity of the Forkhead Transcription Factor AFX. Molecular and Cellular Biology, 2001, 21, 3534-3546.	1.1	287
13	Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proceedings of the United States of America, 2009, 106, 19108-19113.	3.3	274
14	Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO Journal, 2003, 22, 2934-2947.	3.5	269
15	Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. Journal of Molecular Medicine, 1999, 77, 656-665.	1.7	263
16	Mps1 Phosphorylates Borealin to Control Aurora B Activity and Chromosome Alignment. Cell, 2008, 132, 233-246.	13.5	256
17	Integration of Kinase and Phosphatase Activities by BUBR1 Ensures Formation of Stable Kinetochore-Microtubule Attachments. Developmental Cell, 2012, 23, 745-755.	3.1	243
18	Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. Journal of Cell Biology, 2003, 162, 551-563.	2.3	233

GEERT J P L KOPS

#	Article	IF	CITATIONS
19	Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discovery, 2019, 9, 852-871.	7.7	222
20	ZW10 links mitotic checkpoint signaling to the structural kinetochore. Journal of Cell Biology, 2005, 169, 49-60.	2.3	221
21	Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Reports, 2017, 18, 1559-1571.	2.0	206
22	Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nature Chemical Biology, 2010, 6, 359-368.	3.9	201
23	Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nature Communications, 2011, 2, 316.	5.8	193
24	Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science, 2015, 348, 1264-1267.	6.0	192
25	Negative feedback at kinetochores underlies aÂresponsive spindle checkpoint signal. Nature Cell Biology, 2014, 16, 1257-1264.	4.6	181
26	Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nature Genetics, 2019, 51, 824-834.	9.4	162
27	Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends in Cell Biology, 2015, 25, 21-28.	3.6	160
28	A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. ELife, 2015, 4, e05269.	2.8	133
29	Evolution and Function of the Mitotic Checkpoint. Developmental Cell, 2012, 23, 239-250.	3.1	126
30	Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. Journal of Cell Biology, 2013, 203, 943-955.	2.3	125
31	A TPR domain–containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B. Journal of Cell Biology, 2013, 201, 217-231.	2.3	119
32	The Vertebrate Mitotic Checkpoint Protein BUBR1 Is an Unusual Pseudokinase. Developmental Cell, 2012, 22, 1321-1329.	3.1	116
33	Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nature Genetics, 2017, 49, 1148-1151.	9.4	111
34	Sequential Multisite Phospho-Regulation of KNL1-BUB3 Interfaces at Mitotic Kinetochores. Molecular Cell, 2015, 57, 824-835.	4.5	107
35	Molecular Causes for BUBR1 Dysfunction in the Human Cancer Predisposition Syndrome Mosaic Variegated Aneuploidy. Cancer Research, 2010, 70, 4891-4900.	0.4	105
36	Release of Mps1 from kinetochores is crucial for timely anaphase onset. Journal of Cell Biology, 2010, 191, 281-290.	2.3	97

GEERT J P L KOPS

#	Article	IF	CITATIONS
37	Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells. Cell Reports, 2015, 12, 66-78.	2.9	96
38	Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis. Nature Cell Biology, 2018, 20, 800-810.	4.6	92
39	A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO Journal, 2010, 29, 3967-3978.	3.5	87
40	Chemical Genetic Inhibition of Mps1 in Stable Human Cell Lines Reveals Novel Aspects of Mps1 Function in Mitosis. PLoS ONE, 2010, 5, e10251.	1.1	85
41	Kinetochore–microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nature Communications, 2015, 6, 8987.	5.8	82
42	Attachment issues: kinetochore transformations and spindle checkpoint silencing. Current Opinion in Cell Biology, 2016, 39, 101-108.	2.6	82
43	Human chromosomeâ€specific aneuploidy is influenced by <scp>DNA</scp> â€dependent centromeric features. EMBO Journal, 2020, 39, e102924.	3.5	79
44	Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biology, 2018, 8, .	1.5	76
45	Mosaic origin of the eukaryotic kinetochore. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12873-12882.	3.3	76
46	Chromosomal Instability by Inefficient Mps1 Auto-Activation Due to a Weakened Mitotic Checkpoint and Lagging Chromosomes. PLoS ONE, 2008, 3, e2415.	1.1	75
47	Mps1 promotes rapid centromere accumulation of Aurora B. EMBO Reports, 2012, 13, 847-854.	2.0	74
48	Distinct phosphatases antagonize the p53 response in different phases of the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7313-7318.	3.3	73
49	Dissecting the roles of human BUB1 in the spindle assembly checkpoint. Journal of Cell Science, 2015, 128, 2975-82.	1.2	73
50	Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein and Cell, 2016, 7, 516-526.	4.8	70
51	Degree and site of chromosomal instability define its oncogenic potential. Nature Communications, 2020, 11, 1501.	5.8	68
52	Assessing Kinetics from Fixed Cells Reveals Activation of the Mitotic Entry Network at the S/G2 Transition. Molecular Cell, 2014, 53, 843-853.	4.5	65
53	Difference Makers: Chromosomal Instability versus Aneuploidy in Cancer. Trends in Cancer, 2016, 2, 561-571.	3.8	60
54	Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint. Chromosoma, 2012, 121, 509-525.	1.0	56

Geert J P L Kops

#	Article	IF	CITATIONS
55	Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Current Biology, 2020, 30, R589-R602.	1.8	55
56	Finding the middle ground: how kinetochores power chromosome congression. Cellular and Molecular Life Sciences, 2010, 67, 2145-2161.	2.4	52
57	Crowning the Kinetochore: The Fibrous Corona in Chromosome Segregation. Trends in Cell Biology, 2020, 30, 653-667.	3.6	51
58	Preventing aneuploidy: The contribution of mitotic checkpoint proteins. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1786, 24-31.	3.3	50
59	Unique Phylogenetic Distributions of the Ska and Dam1 Complexes Support Functional Analogy and Suggest Multiple Parallel Displacements of Ska by Dam1. Genome Biology and Evolution, 2017, 9, 1295-1303.	1.1	50
60	Improving Depth in Phosphoproteomics by Using a Strong Cation Exchange-Weak Anion Exchange-Reversed Phase Multidimensional Separation Approach. Analytical Chemistry, 2011, 83, 7137-7143.	3.2	49
61	Cyclin B1 scaffolds <scp>MAD</scp> 1 at the kinetochore corona to activate the mitotic checkpoint. EMBO Journal, 2020, 39, e103180.	3.5	49
62	Regulation of sterol carrier protein gene expression by the Forkhead transcription factor FOXO3a. Journal of Lipid Research, 2004, 45, 81-88.	2.0	45
63	Universal Quantitative Kinase Assay Based on Diagonal SCX Chromatography and Stable Isotope Dimethyl Labeling Provides High-definition Kinase Consensus Motifs for PKA and Human Mps1. Journal of Proteome Research, 2013, 12, 2214-2224.	1.8	45
64	Chromosomal copy number heterogeneity predicts survival rates across cancers. Nature Communications, 2021, 12, 3188.	5.8	43
65	Widespread Recurrent Patterns of Rapid Repeat Evolution in the Kinetochore Scaffold KNL1. Genome Biology and Evolution, 2015, 7, 2383-2393.	1.1	40
66	Nuclear chromosome locations dictate segregation error frequencies. Nature, 2022, 607, 604-609.	13.7	39
67	Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nature Genetics, 2021, 53, 1187-1195.	9.4	37
68	Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma, 2014, 123, 471-480.	1.0	35
69	The kinetochore and spindle checkpoint in mammals. Frontiers in Bioscience - Landmark, 2008, Volume, 3606.	3.0	33
70	Phylogenomics-guided discovery of a novel conserved cassette of short linear motifs in BubR1 essential for the spindle checkpoint. Open Biology, 2016, 6, 160315.	1.5	33
71	Centromere Binding and a Conserved Role in Chromosome Stability for SUMO-Dependent Ubiquitin Ligases. PLoS ONE, 2013, 8, e65628.	1.1	29
72	BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer. Cell Death and Differentiation, 2021, 28, 3282-3296.	5.0	28

GEERT J P L KOPS

#	Article	IF	CITATIONS
73	APC16 is a conserved subunit of the anaphase-promoting complex/cyclosome. Journal of Cell Science, 2010, 123, 1623-1633.	1.2	27
74	Chromosomal instability by mutations in the novel minor spliceosome component <i>CENATAC</i> . EMBO Journal, 2021, 40, e106536.	3.5	26
75	Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design. Current Biology, 2019, 29, 104-119.e10.	1.8	23
76	A Biosensor for the Mitotic Kinase MPS1 Reveals Spatiotemporal Activity Dynamics and Regulation. Current Biology, 2020, 30, 3862-3870.e6.	1.8	20
77	Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy. Journal of Cell Science, 2019, 132, .	1.2	19
78	Live imaging of cell division in 3D stem-cell organoid cultures. Methods in Cell Biology, 2018, 145, 91-106.	0.5	17
79	The molecular basis of monopolin recruitment to the kinetochore. Chromosoma, 2019, 128, 331-354.	1.0	17
80	Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nature Communications, 2021, 12, 6003.	5.8	17
81	Kinetochore Malfunction in Human Pathologies. Advances in Experimental Medicine and Biology, 2017, 1002, 69-91.	0.8	15
82	Inferring the Evolutionary History of Your Favorite Protein: A Guide for Molecular Biologists. BioEssays, 2019, 41, 1900006.	1.2	14
83	Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochemical Society Transactions, 2009, 37, 971-975.	1.6	7
84	Cell Division: SACing the Anaphase Problem. Current Biology, 2014, 24, R224-R226.	1.8	7
85	Interactions between N-terminal Modules in MPS1 Enable Spindle Checkpoint Silencing. Cell Reports, 2019, 26, 2101-2112.e6.	2.9	7
86	Compromised MPS1 Activity Induces Multipolar Spindle Formation in Oocytes From Aged Mares: Establishing the Horse as a Natural Animal Model to Study Age-Induced Oocyte Meiotic Spindle Instability. Frontiers in Cell and Developmental Biology, 2021, 9, 657366.	1.8	7
87	Studying Kinetochore Kinases. Methods in Molecular Biology, 2016, 1413, 333-347.	0.4	6
88	Collateral Genome Instability by DNA Damage in Mitosis. Cancer Discovery, 2014, 4, 1256-1258.	7.7	3
89	Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. , 1999, 77, 656.		2
90	A light, rather than a heavy solution for hard working hearts. Journal of Molecular Medicine, 1999, 77, 631-633.	1.7	0

#	Article	IF	CITATIONS
91	Geert Kops. Current Biology, 2019, 29, R718-R720.	1.8	Ο