Guolin Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/888295/publications.pdf

Version: 2024-02-01

			516561	2	154834
	30	1,245	16		30
ı	papers	citations	h-index		g-index
ı					
	30	30	30		2538
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Water-assisted controllable growth of atomically thin WTe ₂ nanoflakes by chemical vapor deposition based on precursor design and substrate engineering strategies. Nanotechnology, 2022, 33, 175602.	1.3	5
2	Nanoconfinement Synthesis of Ultrasmall Bismuth Oxyhalide Nanocrystals with Sizeâ€Induced Fully Reversible Potassiumâ€Ion Storage and Ultrahigh Volumetric Capacity. Advanced Functional Materials, 2022, 32, .	7.8	15
3	Controllable growth of large-area 1T′, 2H ultrathin MoTe ₂ films, and 1T′–2H in-plane homojunction. Journal of Applied Physics, 2022, 131, 185302.	1.1	1
4	Robust transport of charge carriers in in-plane 1T′-2H MoTe2 homojunctions with ohmic contact. Nano Research, 2021, 14, 1311-1318.	5 . 8	16
5	Controllable epitaxial growth of GeSe (sub) 2 (sub) nanostructures and nonlinear optical properties. Nanotechnology, 2021, 32, 465704.	1.3	9
6	Space-confined and substrate-directed synthesis of transition-metal dichalcogenide nanostructures with tunable dimensionality. Science Bulletin, 2020, 65, 1013-1021.	4.3	25
7	Lateral and Vertical MoSe ₂ –MoS ₂ Heterostructures via Epitaxial Growth: Triggered by High-Temperature Annealing and Precursor Concentration. Journal of Physical Chemistry Letters, 2019, 10, 5027-5035.	2.1	13
8	Strain effects on magnetic states of monolayer MoS2 doped with group IIIA to VA atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113609.	1.3	8
9	Controlled growth of atomically thin MoSe ₂ films and nanoribbons by chemical vapor deposition. 2D Materials, 2019, 6, 025002.	2.0	51
10	Controllable epitaxial growth of MoSe ₂ –MoS ₂ lateral heterostructures with tunable electrostatic properties. Nanotechnology, 2018, 29, 484003.	1.3	8
11	Fe ₇ Se ₈ @C core–shell nanoparticles encapsulated within a three-dimensional graphene composite as a high-performance flexible anode for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 5121-5124.	1.4	31
12	Porous Fe ₂ O ₃ Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery. ACS Nano, 2017, 11, 5140-5147.	7.3	421
13	Electrostatic properties of two-dimensional WSe2 nanostructures. Journal of Applied Physics, 2016, 119, .	1.1	12
14	In-situ investigation of graphene oxide under UV irradiation: Evolution of work function. AIP Advances, $2015, 5, .$	0.6	14
15	Surface Potential of Graphene Oxide Investigated by Kelvin Probe Force Microscopy. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 777-781.	1.0	8
16	Formation of ripples in atomically thin MoS ₂ and local strain engineering of electrostatic properties. Nanotechnology, 2015, 26, 105705.	1.3	80
17	Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition. Journal of Applied Physics, 2014, 116, .	1.1	42
18	Synthesis, characterization and electrostatic properties of WS2 nanostructures. AIP Advances, 2014, 4, .	0.6	9

#	Article	IF	CITATIONS
19	Effective Fermi level tuning of Bi2Se3 by introducing CdBi/CaBi dopant. RSC Advances, 2014, 4, 10499.	1.7	1
20	Electrochemically reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitors. RSC Advances, 2014, 4, 13673.	1.7	48
21	The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer. RSC Advances, 2013, 3, 12939.	1.7	33
22	Density functional theory study of Fe adatoms adsorbed monolayer and bilayer MoS2 sheets. Journal of Applied Physics, $2013,114,.$	1.1	35
23	Spiral growth of topological insulator Sb2Te3 nanoplates. Applied Physics Letters, 2013, 102, .	1.5	32
24	Electrostatic properties of few-layer MoS2 films. AIP Advances, 2013, 3, .	0.6	46
25	Fermi level tuning of topological insulator Bi2(SexTe1â^'x)3 nanoplates. Journal of Applied Physics, 2013, 113, 024306.	1.1	12
26	Growth and surface potential characterization of Bi2Te3 nanoplates. AIP Advances, 2012, 2, .	0.6	25
27	Ambipolar charge injection and transport of few-layer topological insulator Bi2Te3 and Bi2Se3 nanoplates. Journal of Applied Physics, 2012, 111, 114312.	1.1	24
28	Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties. RSC Advances, 2012, 2, 10694.	1.7	19
29	Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. Journal of Materials Chemistry, 2012, 22, 4921.	6.7	158
30	Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes. Applied Physics A: Materials Science and Processing, 2011, 104, 545-550.	1.1	44