Li Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8882907/publications.pdf

Version: 2024-02-01

		932766	940134
17	388	10	16
papers	citations	h-index	g-index
17	17	17	316
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles. Food Hydrocolloids, 2021, 113, 106477.	5 . 6	59
2	Influence of Homogenization and Thermal Processing on the Gastrointestinal Fate of Bovine Milk Fat: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2017, 65, 11109-11117.	2.4	55
3	Influence of Dairy Emulsifier Type and Lipid Droplet Size on Gastrointestinal Fate of Model Emulsions: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2018, 66, 9761-9769.	2.4	55
4	Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. International Journal of Biological Macromolecules, 2021, 179, 418-428.	3.6	52
5	Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles. Journal of Agricultural and Food Chemistry, 2017, 65, 4755-4765.	2.4	40
6	Antioxidant capacity of phenolic compounds separated from tea seed oil in vitro and in vivo. Food Chemistry, 2022, 371, 131122.	4.2	28
7	Digestion and absorption properties of Lycium barbarum polysaccharides stabilized selenium nanoparticles. Food Chemistry, 2022, 373, 131637.	4.2	18
8	Physical Stability, Oxidative Stability, and Bioactivity of Nanoemulsion Delivery Systems Incorporating Lipophilic Ingredients: Impact of Oil Saturation Degree. Journal of Agricultural and Food Chemistry, 2021, 69, 5405-5415.	2.4	17
9	Subcritical Water Enhanced with Deep Eutectic Solvent for Extracting Polysaccharides from Lentinus edodes and Their Antioxidant Activities. Molecules, 2022, 27, 3612.	1.7	15
10	Properties of selenium nanoparticles stabilized by Lycium barbarum polysaccharide-protein conjugates obtained with subcritical water. International Journal of Biological Macromolecules, 2022, 205, 672-681.	3 . 6	12
11	The loss and fate of BaA, Chr, BbF, and BaP (PAH4) tracked by stable isotope during frying. Food Chemistry, 2022, 374, 131769.	4.2	10
12	Pickering Emulsion Stabilized by Tea Seed Cake Protein Nanoparticles as Lutein Carrier. Foods, 2022, 11, 1712.	1.9	8
13	Antioxidant capacity and interaction of endogenous phenolic compounds from tea seed oil. Food Chemistry, 2022, 376, 131940.	4.2	7
14	Whey Protein Isolate Nanofibers Prepared by Subcritical Water Stabilized High Internal Phase Pickering Emulsion to Deliver Curcumin. Foods, 2022, 11, 1625.	1.9	5
15	A new perspective on the benzo(a)pyrene generated in tea seeds during roasting. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, 39, 440-450.	1.1	3
16	Migration and Distribution of PAH4 in Oil to French Fries Traced Using a Stable Isotope during Frying. Journal of Agricultural and Food Chemistry, 2022, 70, 5879-5886.	2.4	3
17	Optimization of the refining process for removing benzo(a)pyrene and improving the quality of tea seed oil. European Journal of Lipid Science and Technology, 0, , 2100143.	1.0	1