
Soaram Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/888285/publications.pdf Version: 2024-02-01

SOADAM KIM

#	Article	IF	CITATIONS
1	Real-time ultra-sensitive detection of SARS-CoV-2 by quasi-freestanding epitaxial graphene-based biosensor. Biosensors and Bioelectronics, 2022, 197, 113803.	5.3	29
2	EGaln-Silicone-based highly stretchable and flexible strain sensor for real-time two joint robotic motion monitoring. Sensors and Actuators A: Physical, 2022, 342, 113659.	2.0	12
3	Fast Selective Sensing of Nitrogen-Based Gases Utilizing δ-MnO ₂ -Epitaxial Graphene-Silicon Carbide Heterostructures for Room Temperature Gas Sensing. Journal of Microelectromechanical Systems, 2020, 29, 846-852.	1.7	6
4	Influences of post-heating treatment on crystalline phases of PVDF thin films prepared by atmospheric pressure plasma deposition. Molecular Crystals and Liquid Crystals, 2019, 678, 9-19.	0.4	4
5	Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. ACS Applied Materials & Interfaces, 2019, 11, 16006-16017.	4.0	58
6	Impact of volatile organic compound exposure on electrical breakdown in GaN dual channel microcantilevers. Applied Physics Letters, 2019, 114, .	1.5	4
7	Piezotransistive GaN Microcantilever Based NO <inf>2</inf> Sensing Using Functionalized Nanoscale Thin Films. , 2018, , .		1
8	Self-powered Flexible Strain Sensor with Graphene/P(VDF-TrFE) Heterojunction. , 2018, , .		0
9	P(VDF-TrFE) Film on PDMS Substrate for Energy Harvesting Applications. Applied Sciences (Switzerland), 2018, 8, 213.	1.3	51
10	AlGaN/GaN HFET embedded GaN microcantilevers based potentiometric sensor. , 2016, , .		2
11	Facile Synthesis and Enhanced Ultraviolet Emission of ZnO Nanorods Prepared by Vapor-Confined Face-to-Face Annealing. ACS Applied Materials & Interfaces, 2015, 7, 873-879.	4.0	11
12	Influence of Al-, Co-, Cu-, and In-doped ZnO buffer layers on the structural and the optical properties of ZnO thin films. Journal of the Korean Physical Society, 2015, 66, 224-228.	0.3	7
13	Effects of Ga concentration on the structural, electrical and optical properties of Ga-doped ZnO thin films grown by sol-gel method. Journal of the Korean Physical Society, 2014, 64, 109-113.	0.3	6
14	Influence of Cr-doping on the structural and the optical properties of ZnO thin films prepared by sol-gel spin coating. Journal of the Korean Physical Society, 2014, 64, 41-45.	0.3	2
15	Photoluminescence studies of ZnO films fabricated by using a combination of a hydrothermal method and plasma-assisted molecular beam epitaxy regrowth. Journal of the Korean Physical Society, 2014, 64, 455-460.	0.3	1
16	Hydrothermally grown boron-doped ZnO nanorods for various applications: Structural, optical, and electrical properties. Electronic Materials Letters, 2014, 10, 81-87.	1.0	15
17	Influence of gas flow on structural and optical properties of ZnO submicron particles grown on Au nano thin films by vapor phase transport. Electronic Materials Letters, 2014, 10, 915-920.	1.0	1
18	Structural, optical, and electrical properties of ZnO thin films deposited by sol-gel dip-coating process at low temperature. Electronic Materials Letters, 2014, 10, 869-878.	1.0	12

SOARAM KIM

#	Article	IF	CITATIONS
19	K-doping effects on the characteristics of ZnO thin films synthesized by using a spin-coating method. Journal of the Korean Physical Society, 2014, 64, 1581-1585.	0.3	9
20	Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon. Electronic Materials Letters, 2014, 10, 565-571.	1.0	5
21	Optical Parameters of Boron-Doped ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction. Journal of Nanoscience and Nanotechnology, 2014, 14, 8512-8517.	0.9	1
22	Emission Wavelength Tuning of Porous Silicon with Ultra-Thin ZnO Capping Layers by Plasma-Assisted Molecular Beam Epitaxy. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 112-116.	0.1	0
23	Photoluminescence Properties of ZnO Disks Grown on Au Nano Thin Films Using Vapor Phase Transport. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 152-156.	0.1	0
24	Optical and Structural Properties of Al-Doped CdZnO Thin Films with Different Al Concentrations. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 147-151.	0.1	1
25	Effects of Ga Doping on Structural and Optical Properties of ZnO Nanorods. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 182-188.	0.1	0
26	Structural and Optical Properties of ZnO Nanostructures with Various Distance Condition by Vapor Phase Transport. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 177-181.	0.1	0
27	Effects of in doping on structural and optical properties of ZnO nanorods grown by hydrothermal method. Electronic Materials Letters, 2013, 9, 509-512.	1.0	8
28	Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method. Electronic Materials Letters, 2013, 9, 293-298.	1.0	17
29	Improved optical and electrical properties of sol–gel-derived boron-doped zinc oxide thin films. Journal of Sol-Gel Science and Technology, 2013, 67, 580-591.	1.1	10
30	Enhanced optical and electrical properties of boron-doped zinc-oxide thin films prepared by using the sol-gel dip-coating method. Journal of the Korean Physical Society, 2013, 63, 1804-1808.	0.3	6
31	Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method. Optical Materials, 2013, 35, 2418-2424.	1.7	51
32	Optical Parameters of Al-Doped ZnO Nanorod Array Thin Films Grown via the Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2013, 13, 6183-6188.	0.9	2
33	Photoluminescence Properties of Defect Emissions in Al-Doped ZnO Nanorod Array Thin Films. Journal of Nanoscience and Nanotechnology, 2013, 13, 6226-6230.	0.9	1
34	Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods. Bulletin of the Korean Chemical Society, 2013, 34, 3335-3339.	1.0	20
35	Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method. Bulletin of the Korean Chemical Society, 2013, 34, 1205-1211.	1.0	51
36	Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method. Bulletin of the Korean Chemical Society, 2013, 34, 95-98.	1.0	3

SOARAM KIM

#	Article	IF	CITATIONS
37	Structural and blue emission properties of Al-doped ZnO nanorod array thin films grown by hydrothermal method. Electronic Materials Letters, 2012, 8, 445-450.	1.0	46
38	Magnesium Content Ratio Effects of MgxZn1–xO Seed Layers on Structural and Optical Properties of ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2012, 12, 5386-5391.	0.9	0
39	Photoluminescence studies of ZnO thin films on R-plane sapphire substrates grown by sol–gel method. Journal of Luminescence, 2012, 132, 2581-2585.	1.5	16
40	Effects of post-annealing temperature on the properties of ZnO nanorods grown on homogenous seed-layers by using the hydrothermal method. Journal of the Korean Physical Society, 2012, 60, 1605-1610.	0.3	2
41	Fabrication and photoluminescence studies of porous ZnO nanorods. Journal of the Korean Physical Society, 2012, 61, 102-107.	0.3	3
42	Temperature-dependent photoluminescence of ZnO thin films deposited by using the sol-gel dip-coating method. Journal of the Korean Physical Society, 2012, 61, 1171-1176.	0.3	0
43	Effects of precursor concentrations on ZnO nano-fibrous thin films grown by using the sol-gel dip-coating method. Journal of the Korean Physical Society, 2012, 61, 1925-1931.	0.3	10
44	Oxygen plasma power dependence on ZnO grown on porous silicon substrates by plasma-assisted molecular beam epitaxy. Materials Research Bulletin, 2012, 47, 2879-2883.	2.7	4
45	Laser-assisted sol-gel growth and characteristics of ZnO thin films. Applied Physics Letters, 2012, 100, 252108.	1.5	13
46	Hydrothermal growth and properties of rod-like ZnO submicron crystals on Al-doped ZnO seed layers with different Al concentrations. Journal of the Korean Physical Society, 2012, 60, 94-98.	0.3	13
47	Effects of buffer layer thickness on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy. Vacuum, 2012, 86, 1373-1379.	1.6	19
48	Effects of growth temperature for buffer layers on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy. Optical Materials, 2012, 34, 1543-1548.	1.7	17
49	Effects of growth temperature on the structural and the optical properties of ZnO thin films on porous silicon grown by using plasma-assisted molecular beam epitaxy. Journal of the Korean Physical Society, 2012, 60, 1570-1575.	0.3	3
50	Effects of zinc capping layers and annealing on the properties of porous silicon. Journal of the Korean Physical Society, 2012, 60, 1582-1586.	0.3	3
51	Effects of post-heat-treatment temperature for seed layers on the properties of ZnO nanostructures grown by using the hydrothermal method. Journal of the Korean Physical Society, 2012, 60, 1593-1598.	0.3	5
52	Effects of growth conditions on the structural and the optical properties of ZnO submicron particles grown by using vapor phase transport. Journal of the Korean Physical Society, 2012, 60, 1599-1604.	0.3	6
53	Growth and characterization of seed layer-free ZnO thin films deposited on porous silicon by hydrothermal method. Electronic Materials Letters, 2012, 8, 75-80.	1.0	15
54	ZnO Nanorods Grown on Cd _x Zn _{1-x} O Seed Layers with Various Cd Mole Fractions. Bulletin of the Korean Chemical Society, 2012, 33, 189-193.	1.0	4

SOARAM KIM

#	Article	IF	CITATIONS
55	White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite. Journal of Sol-Gel Science and Technology, 2011, 59, 364-370.	1.1	27
56	Growth of ZnO Soccer Ball Structures by Using Vapor Phase Transport. Journal of the Korean Physical Society, 2011, 59, 129-133.	0.3	13
57	Effects of Annealing Temperature on the Structural and the Optical Properties of ZnO Thin Films Grown on Porous Silicon by Using Plasma-assisted Molecular Beam Epitaxy. Journal of the Korean Physical Society, 2011, 59, 2343-2348.	0.3	14
58	Nanocrystalline ZnO Thin Films Grown on Porous Silicon by Sol-gel Method and Effects of Post-annealing. Journal of the Korean Physical Society, 2011, 59, 346-352.	0.3	19