Chikara Furusawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8882516/publications.pdf Version: 2024-02-01

CHIKADA FUDUSAWA

#	Article	IF	CITATIONS
1	Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development (Cambridge), 2005, 132, 4363-4374.	2.5	410
2	SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics, 2017, 33, 2314-2321.	4.1	297
3	The cyclic gene <i>Hes1</i> contributes to diverse differentiation responses of embryonic stem cells. Genes and Development, 2009, 23, 1870-1875.	5.9	226
4	Prediction of antibiotic resistance by gene expression profiles. Nature Communications, 2014, 5, 5792.	12.8	220
5	Zipf's Law in Gene Expression. Physical Review Letters, 2003, 90, 088102.	7.8	213
6	Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2009, 9, 32-44.	2.3	199
7	Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, 2007, 131, 34-44.	3.8	197
8	A Dynamical-Systems View of Stem Cell Biology. Science, 2012, 338, 215-217.	12.6	172
9	Ubiquity of log-normal distributions in intra-cellular reaction dynamics. Biophysics (Nagoya-shi,) Tj ETQq1 1 0.78	34314.rgB1 0.4	Overlock 10
10	Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genomics, 2010, 11, 579.	2.8	125
11	Comprehensive phenotypic analysis of singleâ€gene deletion and overexpression strains of <i>Saccharomyces cerevisiae</i> . Yeast, 2011, 28, 349-361.	1.7	124
12	Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential. PLoS ONE, 2011, 6, e27232.	2.5	108
13	Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microbial Cell Factories, 2009, 8, 43.	4.0	104
14	Theory of Robustness of Irreversible Differentiation in a Stem Cell System: Chaos Hypothesis. Journal of Theoretical Biology, 2001, 209, 395-416.	1.7	91
15	OpenMebius: An Open Source Software for Isotopically Nonstationary ¹³ C-Based Metabolic Flux Analysis. BioMed Research International, 2014, 2014, 1-10.	1.9	87
16	Integrated Metabolic Flux and Omics Analysis of Synechocystis sp. PCC 6803 under Mixotrophic and Photoheterotrophic Conditions. Plant and Cell Physiology, 2014, 55, 1605-1612.	3.1	86
17	Emergence of Rules in Cell Society: Differentiation, Hierarchy, and Stability. Bulletin of Mathematical Biology, 1998, 60, 659-687.	1.9	78
18	Comparison of Sequence Reads Obtained from Three Next-Generation Sequencing Platforms. PLoS ONE, 2011, 6, e19534.	2.5	75

#	Article	IF	CITATIONS
19	Transition from Positive to Neutral in Mutation Fixation along with Continuing Rising Fitness in Thermal Adaptive Evolution. PLoS Genetics, 2010, 6, e1001164.	3.5	74
20	Adaptation of Saccharomyces cerevisiae Cells to High Ethanol Concentration and Changes in Fatty Acid Composition of Membrane and Cell Size. PLoS ONE, 2008, 3, e2623.	2.5	73
21	Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro. Nature Communications, 2017, 8, 15589.	12.8	71
22	Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microbial Cell Factories, 2007, 6, 19.	4.0	70
23	Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation. PLoS Computational Biology, 2015, 11, e1004476.	3.2	68
24	Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Applied Microbiology and Biotechnology, 2006, 70, 346-357.	3.6	65
25	A Generic Mechanism for Adaptive Growth Rate Regulation. PLoS Computational Biology, 2008, 4, e3.	3.2	63
26	Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microbial Cell Factories, 2014, 13, 64.	4.0	63
27	Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Applied Microbiology and Biotechnology, 2011, 92, 347-358.	3.6	62
28	Raman spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli. Communications Biology, 2018, 1, 85.	4.4	62
29	Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2009, 81, 1097-1106.	3.6	60
30	Integrated transcriptomic and metabolomic analysis of the central metabolism of <i>Synechocystis</i> sp. PCC 6803 under different trophic conditions. Biotechnology Journal, 2013, 8, 571-580.	3.5	56
31	Toward prediction and control of antibiotic-resistance evolution. Current Opinion in Biotechnology, 2018, 54, 45-49.	6.6	56
32	Experimental optimization of probe length to increase the sequence specificity of high-density oligonucleotide microarrays. BMC Genomics, 2007, 8, 373.	2.8	55
33	Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2012, 113, 192-195.	2.2	52
34	Origin of multicellular organisms as an inevitable consequence of dynamical systems. The Anatomical Record, 2002, 268, 327-342.	1.8	48
35	An evolutionary relationship between genetic variation and phenotypic fluctuation. Journal of Theoretical Biology, 2006, 240, 78-86.	1.7	48
36	Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis. Microbial Cell Factories, 2012, 11, 87.	4.0	47

#	Article	IF	CITATIONS
37	Emergence of Multicellular Organisms with Dynamic Differentiation and Spatial Pattern. Artificial Life, 1998, 4, 79-93.	1.3	46
38	Chaotic expression dynamics implies pluripotency: when theory and experiment meet. Biology Direct, 2009, 4, 17.	4.6	46
39	An improved physico-chemical model of hybridization on high-density oligonucleotide microarrays. Bioinformatics, 2008, 24, 1278-1285.	4.1	45
40	FastPros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics, 2014, 30, 981-987.	4.1	43
41	Origin of Complexity in Multicellular Organisms. Physical Review Letters, 2000, 84, 6130-6133.	7.8	42
42	Engineering strategy of yeast metabolism for higher alcohol production. Microbial Cell Factories, 2011, 10, 70.	4.0	42
43	Adaptation to Optimal Cell Growth through Self-Organized Criticality. Physical Review Letters, 2012, 108, 208103.	7.8	42
44	Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess and Biosystems Engineering, 2009, 32, 681-688.	3.4	39
45	Formation of dominant mode by evolution in biological systems. Physical Review E, 2018, 97, 042410.	2.1	38
46	Development of an Automated Culture System for Laboratory Evolution. Journal of the Association for Laboratory Automation, 2014, 19, 478-482.	2.8	37
47	High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli. Nature Communications, 2020, 11, 5970.	12.8	37
48	Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2011, 91, 143-151.	3.6	36
49	Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. Journal of Biotechnology, 2017, 255, 47-56.	3.8	36
50	Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World Journal of Microbiology and Biotechnology, 2018, 34, 157.	3.6	33
51	Genome-wide expression analysis of Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Journal of Bioscience and Bioengineering, 2010, 110, 602-607.	2.2	32
52	Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. Journal of Bioscience and Bioengineering, 2006, 102, 568-571.	2.2	31
53	Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. Journal of General and Applied Microbiology, 2014, 60, 112-118.	0.7	31
54	Phenotypic convergence in bacterial adaptive evolution to ethanol stress. BMC Evolutionary Biology, 2015, 15, 180.	3.2	30

#	Article	IF	CITATIONS
55	Evaluating ¹³ C enrichment data of free amino acids for precise metabolic flux analysis. Biotechnology Journal, 2011, 6, 1377-1387.	3.5	29
56	Prediction of Cross-resistance and Collateral Sensitivity by Gene Expression profiles and Genomic Mutations. Scientific Reports, 2017, 7, 14009.	3.3	29
57	Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology, 2013, 97, 4811-4819.	3.6	27
58	Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction. PLoS ONE, 2015, 10, e0144430.	2.5	27
59	Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology?. Applied Microbiology and Biotechnology, 2010, 87, 391-400.	3.6	25
60	Acceleration and suppression of resistance development by antibiotic combinations. BMC Genomics, 2017, 18, 328.	2.8	24
61	Complex Organization in Multicellularity as a Necessity in Evolution. Artificial Life, 2000, 6, 265-281.	1.3	23
62	Precise metabolic flux analysis of coryneform bacteria by gas chromatography–mass spectrometry and verification by nuclear magnetic resonance. Journal of Bioscience and Bioengineering, 2006, 102, 413-424.	2.2	23
63	In silico screening of triple reaction knockout Escherichia coli strains for overproduction of useful metabolites. Journal of Bioscience and Bioengineering, 2013, 115, 221-228.	2.2	23
64	Application of adaptive laboratory evolution to overcome a flux limitation in an <i>Escherichia coli</i> production strain. Biotechnology and Bioengineering, 2018, 115, 1542-1551.	3.3	23
65	Integrated Analysis of the Transcriptome and Metabolome of <i>Corynebacterium glutamicum</i> during Penicillinâ€Induced Glutamic Acid Production. Biotechnology Journal, 2018, 13, e1700612.	3.5	23
66	Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids. Applied Microbiology and Biotechnology, 2007, 75, 415-426.	3.6	22
67	Improving protein secretion of a transglutaminase-secreting Corynebacterium glutamicum recombinant strain on the basis of 13C metabolic flux analysis. Journal of Bioscience and Bioengineering, 2011, 112, 595-601.	2.2	22
68	Bacterial transcriptome reorganization in thermal adaptive evolution. BMC Genomics, 2015, 16, 802.	2.8	22
69	Epigenetic Feedback Regulation Accelerates Adaptation and Evolution. PLoS ONE, 2013, 8, e61251.	2.5	21
70	Improvement of <scp>L</scp> -Lactate Production by <i>CYB2</i> Gene Disruption in a Recombinant <i>Saccharomyces cerevisiae</i> Strain under Low pH Condition. Bioscience, Biotechnology and Biochemistry, 2008, 72, 3063-3066.	1.3	20
71	Model-based analysis of non-specific binding for background correction of high-density oligonucleotide microarrays. Bioinformatics, 2009, 25, 36-41.	4.1	20
72	An in silico platform for the design of heterologous pathways in nonnative metabolite production. BMC Bioinformatics, 2012, 13, 93.	2.6	20

#	Article	IF	CITATIONS
73	Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. Journal of Bioscience and Bioengineering, 2012, 113, 526-528.	2.2	20
74	Global relationships in fluctuation and response in adaptive evolution. Journal of the Royal Society Interface, 2015, 12, 20150482.	3.4	20
75	Robust development as a consequence of generated positional information. Journal of Theoretical Biology, 2003, 224, 413-435.	1.7	19
76	Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae. Process Biochemistry, 2009, 44, 647-653.	3.7	19
77	Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids. Metabolites, 2014, 4, 408-420.	2.9	19
78	Universal Relationship in Gene-Expression Changes for Cells in Steady-Growth State. Physical Review X, 2015, 5, .	8.9	19
79	13C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect. Journal of Bioscience and Bioengineering, 2015, 120, 140-144.	2.2	18
80	Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in I-lactate production by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2009, 84, 1149-1159.	3.6	17
81	Systems Metabolic Engineering: The Creation of Microbial Cell Factories by Rational Metabolic Design and Evolution. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 1-23.	1.1	17
82	Morphogenesis, plasticity and irreversibility. International Journal of Developmental Biology, 2006, 50, 223-232.	0.6	17
83	Macroscopic Theory for Evolving Biological Systems Akin to Thermodynamics. Annual Review of Biophysics, 2018, 47, 273-290.	10.0	16
84	Evolutionary origin of power-laws in a biochemical reaction network: Embedding the distribution of abundance into topology. Physical Review E, 2006, 73, 011912.	2.1	15
85	Molecular Mechanisms and Metabolic Engineering of Glutamate Overproduction in Corynebacterium glutamicum. Sub-Cellular Biochemistry, 2012, 64, 261-281.	2.4	15
86	Suppression of antibiotic resistance evolution by single-gene deletion. Scientific Reports, 2020, 10, 4178.	3.3	15
87	Dynamic change in promoter activation during lysine biosynthesis in Escherichia coli cells. Molecular BioSystems, 2008, 4, 128-134.	2.9	14
88	Raman spectroscopy as a tool for ecology and evolution. Journal of the Royal Society Interface, 2017, 14, 20170174.	3.4	14
89	High-throughput identification of the sensitivities of an Escherichia coli ΔrecA mutant strain to various chemical compounds. Journal of Antibiotics, 2019, 72, 566-573.	2.0	13
90	Suppression of antibiotic resistance acquisition by combined use of antibiotics. Journal of Bioscience and Bioengineering, 2015, 120, 467-469.	2.2	12

#	Article	IF	CITATIONS
91	Evolutionary Changes in DnaA-Dependent Chromosomal Replication in Cyanobacteria. Frontiers in Microbiology, 2020, 11, 786.	3.5	12
92	Selection of initial conditions for recursive production of multicellular organisms. Journal of Theoretical Biology, 2005, 233, 501-514.	1.7	11
93	Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation. Scientific Reports, 2018, 8, 11965.	3.3	11
94	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	12.8	11
95	Elevated Sporulation Efficiency in Fission Yeast Schizosaccharomyces japonicus Strains Isolated from Drosophila. Journal of Fungi (Basel, Switzerland), 2021, 7, 350.	3.5	10
96	Consistency principle in biological dynamical systems. Theory in Biosciences, 2008, 127, 195-204.	1.4	9
97	Relevance of phenotypic noise to adaptation and evolution. IET Systems Biology, 2008, 2, 234-246.	1.5	9
98	Toward understanding of evolutionary constraints: experimental and theoretical approaches. Biophysical Reviews, 2020, 12, 1155-1161.	3.2	9
99	Experimental demonstration of operon formation catalyzed by insertion sequence. Nucleic Acids Research, 2022, 50, 1673-1686.	14.5	9
100	DNA microarray analysis onSaccharomyces cerevisiae under high carbon dioxide concentration in fermentation process. Biotechnology and Bioprocess Engineering, 2005, 10, 451-461.	2.6	8
101	Metabolic pathway recruiting through genomic data analysis for industrial application of Saccharomyces cerevisiae. Biochemical Engineering Journal, 2007, 36, 28-37.	3.6	8
102	Understanding metabolic adaptation by using bacterial laboratory evolution and trans-omics analysis. Biophysical Reviews, 2020, 12, 677-682.	3.2	8
103	Metabolic dynamics restricted by conserved carriers: Jamming and feedback. PLoS Computational Biology, 2017, 13, e1005847.	3.2	8
104	Potential of aSaccharomyces cerevisiaerecombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction. Bioengineered, 2014, 5, 123-128.	3.2	7
105	Phenotypic changes associated with the fitness cost in antibiotic resistant Escherichia coli strains. Molecular BioSystems, 2016, 12, 414-420.	2.9	7
106	Laboratory evolution of Mycobacterium on agar plates for analysis of resistance acquisition and drug sensitivity profiles. Scientific Reports, 2021, 11, 15136.	3.3	7
107	Global change in Escherichia coli gene expression in initial stage of symbiosis with Dictyostelium cells. BioSystems, 2004, 73, 163-171.	2.0	6
108	Analysis of fluctuation in protein abundance without promoter regulation based on Escherichia coli continuous culture. BioSystems, 2007, 90, 614-622.	2.0	6

#	Article	IF	CITATIONS
109	Relationship between noise characteristics in protein expressions and regulatory structures of amino acid biosynthesis pathways. IET Systems Biology, 2010, 4, 82-89.	1.5	6
110	Theoretical modeling reveals that regulatory T cells increase T-cell interaction with antigen-presenting cells for stable immune tolerance. International Immunology, 2019, 31, 743-753.	4.0	6
111	Development of a Physical Model-Based Algorithm for the Detection of Single-Nucleotide Substitutions by Using Tiling Microarrays. PLoS ONE, 2013, 8, e54571.	2.5	6
112	Potential contribution of intrinsic developmental stability toward body plan conservation. BMC Biology, 2022, 20, 82.	3.8	6
113	Robust and irreversible development in cell society as a general consequence of intra–inter dynamics. Physica A: Statistical Mechanics and Its Applications, 2000, 280, 22-33.	2.6	5
114	Genome-Wide Analysis of the Effects of Location and Number of Stress Response Elements on Gene Expression in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2008, 106, 507-510.	2.2	5
115	Analysis of metabolic network based on conservation of molecular structure. BioSystems, 2009, 95, 175-178.	2.0	5
116	ArtPathDesign: Rational heterologous pathway design system for the production of nonnative metabolites. Journal of Bioscience and Bioengineering, 2013, 116, 524-527.	2.2	5
117	Analysis of stochasticity in promoter activation by using a dual-fluorescence reporter system. BioSystems, 2009, 97, 160-164.	2.0	4
118	Global/temporal gene expression analysis of Escherichia coli in the early stages of symbiotic relationship development with the cellular slime mold Dictyostelium discoideum. BioSystems, 2009, 96, 141-164.	2.0	4
119	Acceleration of target production in coâ€culture by enhancing intermediate consumption through adaptive laboratory evolution. Biotechnology and Bioengineering, 2022, 119, 936-945.	3.3	4
120	Design of Superior Cell Factories Based on Systems Wide Omics Analysis. , 2012, , 57-81.		3
121	Genome-wide identification of the targets for genetic manipulation to improve l-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection. Journal of Biotechnology, 2013, 168, 185-193.	3.8	3
122	Direction and Constraint in Phenotypic Evolution: Dimension Reduction and Global Proportionality in Phenotype Fluctuation and Responses. , 2021, , 35-58.		2
123	Mutational property of newly identified mutagen l-glutamic acid γ-hydrazide in Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2021, 823, 111759.	1.0	2
124	The sixth transmembrane region of a pheromone G-protein coupled receptor, Map3, is implicated in discrimination of closely related pheromones in <i>Schizosaccharomyces pombe</i> . Genetics, 2021, 219, .	2.9	2
125	Complete Genome Sequence of a Radioresistant Bacterial Strain, Deinococcus grandis ATCC 43672. Microbiology Resource Announcements, 2019, 8,	0.6	2
126	Complete Genome Sequences of Three Star-Shaped Bacteria, Stella humosa, Stella vacuolata, and Stella Species ATCC 35155. Microbiology Resource Announcements, 2019, 8, .	0.6	2

#	Article	IF	CITATIONS
127	Decoding gut microbiota by imaging analysis of fecal samples. IScience, 2021, 24, 103481.	4.1	2
128	Analysis of lager brewing yeast at low temperature fermentation using DNA microarray. Journal of Biotechnology, 2008, 136, S351-S352.	3.8	1
129	Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution. Methods in Molecular Biology, 2017, 1520, 263-279.	0.9	1
130	Enhancement of Kâ€strategy evolution in histidine utilization using a container with compartments. Genes To Cells, 2018, 23, 893-903.	1.2	1
131	Morphological change of coiled bacterium Spirosoma linguale with acquisition of β-lactam resistance. Scientific Reports, 2021, 11, 13278.	3.3	1
132	Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression. PLoS ONE, 2016, 11, e0163134.	2.5	1
133	Insight into the sequence specificity of a probe on an Affymetrix GeneChip by titration experiments using only one oligonucleotide. Biophysics (Nagoya-shi, Japan), 2007, 3, 47-56.	0.4	1
134	Universal Statistics for Chemical Abundances in a Reproducing Cell. Journal of the Korean Physical Society, 2007, 50, 142.	0.7	1
135	2P480 Relationship between Evolutionary Dynamics and Preservation of Molecular Structures in Metabolic Network(50. Non-equilibrium and complex system,Poster Session,Abstract,Meeting Program) Tj ETQq1	100178431	1⊕rgBT /C∾
136	INVERSE METABOLIC ENGINEERING BY INTEGRATION OF MULTIPLE OMICS ANALYSES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 19-24.	0.4	0
137	A model-based analysis method for detection of single-base substitution using resequencing microarrays. Journal of Bioscience and Bioengineering, 2009, 108, S160.	2.2	0
138	Flux balance analysis of Corynebacterium glutamicum using a genome-scale metabolic model. Journal of Bioscience and Bioengineering, 2009, 108, S166.	2.2	0
139	2SA1500 A dynamic model of cell differentiation: toward understanding of stem cell systems(2SA) Tj ETQq1 1 0.7 Seibutsu Butsuri, 2010, 50, S8.	84314 rg8 0.1	BT /Overlock 0
140	Universal statistical laws in replicating cellular dynamics(The 1st Award Seminar for outstanding) Tj ETQq0 0 0 rgE 52, AS27.	3T /Overloo 0.1	ck 10 Tf 50 2 0
141	3P256 Laboratory evolution of antibiotic resistant Escherichia coli(20. Origin of life &) Tj ETQq1 1 0.784314	rgBT /Over	rlgck 10 Tf 5
142	Analysis of Bacterial Laboratory Evolution toward Prediction, Control, and Macroscopic State Theory of Evolution. Seibutsu Butsuri, 2019, 59, 262-265.	0.1	0
143	Toward Predicting Gene Expression and Metabolic Functions from Label-Free Raman Imaging of Living Cells. Biophysical Journal, 2020, 118, 347a.	0.5	0
144	UNIVERSAL STATISTICS OF CELLS WITH RECURSIVE PRODUCTION. World Scientific Lecture Notes in Complex Systems, 2005, , 155-176.	0.1	0

#	Article	IF	CITATIONS
145	Analysis of Fluctuation in Gene Expression Based on Continuous Culture System. Lecture Notes in Computer Science, 2006, , 113-127.	1.3	0
146	On Compatible Condition for Morphogenetic Diversity and Recursive Production of Multicellular Organisms. Seibutsu Butsuri, 2007, 47, 029-035.	0.1	0
147	Quantitative expression analysis using oligonucleotide microarrays based on a physico-chemical model. , 2008, , .		0
148	Metabolic flux balance analysis of an industrially useful microorganism Corynebacerium glutamicum by a genome-scale reconstructed model. , 2008, , .		0
149	Fluctuation-Driven Adaptation and Symbiosis in Cellular Dynamics. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 238-248.	0.3	0
150	Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images. Frontiers in Microbiology, 2022, 13, 839718.	3.5	0