Ville A Vuorinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/888251/publications.pdf

Version: 2024-02-01

90 papers 2,134 citations

257450 24 h-index 289244 40 g-index

90 all docs 90 docs citations

90 times ranked 1596 citing authors

#	Article	IF	CITATIONS
1	Large-eddy simulation of diesel pilot spray ignition in lean methane-air and methanol-air mixtures at different ambient temperatures. International Journal of Engine Research, 2023, 24, 965-981.	2.3	6
2	Parametric CFD study for finding the optimal tube arrangement of a fin-and-tube heat exchanger with plain fins in a marine environment. Applied Thermal Engineering, 2022, 200, 117642.	6.0	6
3	Full-scale ship stern wave with the modelled and resolved turbulence including the hull roughness effect. Ocean Engineering, 2022, 245, 110434.	4.3	1
4	Fast reactive flow simulations using analytical Jacobian and dynamic load balancing in OpenFOAM. Physics of Fluids, 2022, 34, .	4.0	16
5	Large-eddy simulation of split injection strategies in RCCI conditions. Combustion Theory and Modelling, 2022, 26, 590-611.	1.9	2
6	Effects of hydrogen enrichment and turbulence intensity on the combustion mode in locally stratified dual-fuel mixtures of n-dodecane/methane. Applications in Energy and Combustion Science, 2022, 10, 100072.	1.5	2
7	A three-dimensional conjugate heat transfer model for methanol synthesis in a modular millireactor. Chemical Engineering Science, 2022, 258, 117765.	3.8	2
8	Large eddy simulation of diesel spray–assisted dual-fuel ignition: A comparative study on two <i>n</i> hncoloreane mechanisms at different ambient temperatures. International Journal of Engine Research, 2021, 22, 2521-2532.	2.3	11
9	Waste heat recovery from a data centre and 5G smart poles for low-temperature district heating network. Energy, 2021, 218, 119468.	8.8	29
10	Large-eddy simulation of tri-fuel ignition: diesel spray-assisted ignition of lean hydrogen–methane–air mixtures. Combustion Theory and Modelling, 2021, 25, 436-459.	1.9	9
11	Shear localization in large amplitude oscillatory shear (LAOS) flows of particulate suspensions. Physical Review Fluids, 2021, 6, .	2.5	O
12	Scaling effects on the free surface backward facing step flow. Physics of Fluids, 2021, 33, .	4.0	9
13	Effects of ethane addition on diesel-methane dual-fuel combustion in a heavy-duty engine. Fuel, 2021, 289, 119834.	6.4	10
14	A numerical performance study of a fixed-bed reactor for methanol synthesis by CO2 hydrogenation. International Journal of Hydrogen Energy, 2021, 46, 15635-15648.	7.1	15
15	Large-eddy simulation of spray assisted dual-fuel ignition under reactivity-controlled dynamic conditions. Fuel, 2021, 293, 120295.	6.4	13
16	Experimental study on tri-fuel combustion using premixed methane-hydrogen mixtures ignited by a diesel pilot. International Journal of Hydrogen Energy, 2021, 46, 21182-21197.	7.1	17
17	Large-eddy simulation of tri-fuel combustion: Diesel spray assisted ignition of methanol-hydrogen blends. International Journal of Hydrogen Energy, 2021, 46, 21687-21703.	7.1	22
18	Effect of pilot fuel properties on engine performance and combustion stability in a tri-fuel engine powered by premixed methane-hydrogen and diesel pilot. International Journal of Hydrogen Energy, 2021, 46, 37469-37486.	7.1	12

#	Article	IF	CITATIONS
19	DLBFoam: An open-source dynamic load balancing model for fast reacting flow simulations in OpenFOAM. Computer Physics Communications, 2021, 267, 108073.	7.5	32
20	Effects of blending 2,5-dimethylfuran and dimethyl ether to toluene primary reference fuels: A chemical kinetic study. Fuel, 2021, 304, 121401.	6.4	4
21	Efficient storage and recovery of waste heat by phase change material embedded within additively manufactured grid heat exchangers. International Journal of Heat and Mass Transfer, 2021, 181, 121846.	4.8	24
22	Polymer drag reduction in surfactant-contaminated turbulent bubbly channel flows. Physical Review Fluids, 2021, 6, .	2.5	1
23	An artificial intelligence based-model for heat transfer modeling of 5G smart poles. Case Studies in Thermal Engineering, 2021, 28, 101613.	5.7	1
24	Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar. PLoS ONE, 2021, 16, e0260237.	2.5	9
25	The effect of fuel on high velocity evaporating fuel sprays: Large-Eddy simulation of Spray A with various fuels. International Journal of Engine Research, 2020, 21, 26-42.	2.3	29
26	Deposition of dry particles on a fin-and-tube heat exchanger by a coupled soft-sphere DEM and CFD. International Journal of Heat and Mass Transfer, 2020, 149, 119046.	4.8	10
27	The ghost fluid method for OpenFOAM: A comparative study in marine context. Ocean Engineering, 2020, 216, 108007.	4.3	9
28	A computational fluid dynamics study by conjugate heat transfer in OpenFOAM: A liquid cooling concept for high power electronics. International Journal of Heat and Fluid Flow, 2020, 85, 108654.	2.4	28
29	Large-Eddy Simulation of ECN Spray A: Sensitivity Study on Modeling Assumptions. Energies, 2020, 13, 3360.	3.1	18
30	Numerical study of bubbly flow in a swirl atomizer. Physics of Fluids, 2020, 32, .	4.0	10
31	Safe and Sustainable Design of Composite Smart Poles for Wireless Technologies. Applied Sciences (Switzerland), 2020, 10, 7594.	2.5	3
32	Computational and experimental investigation of a swirl nozzle for viscous fluids. International Journal of Multiphase Flow, 2020, 128, 103278.	3.4	18
33	Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Safety Science, 2020, 130, 104866.	4.9	349
34	Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures. Combustion and Flame, 2020, 215, 51-65.	5.2	48
35	A numerical study on combustion mode characterization for locally stratified dual-fuel mixtures. Combustion and Flame, 2020, 214, 121-135.	5.2	29
36	Numerical study on tri-fuel combustion: Ignition properties of hydrogen-enriched methane-diesel and methanol-diesel mixtures. International Journal of Hydrogen Energy, 2020, 45, 4946-4962.	7.1	28

3

#	Article	IF	CITATIONS
37	Integrated study of flue gas flow and superheating process in a recovery boiler using computational fluid dynamics and 1D-process modeling. Tappi Journal, 2020, 19, 303-316.	0.5	1
38	A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine. Applied Energy, 2019, 251, 113191.	10.1	39
39	Large-Eddy Simulation of local heat transfer in plate and pin fin heat exchangers confined in a pipe flow. International Journal of Heat and Mass Transfer, 2019, 134, 641-655.	4.8	19
40	Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds. Applied Energy, 2019, 250, 801-820.	10.1	28
41	A large-eddy simulation study on the influence of diesel pilot spray quantity on methane-air flame initiation. Combustion and Flame, 2019, 206, 506-521.	5.2	41
42	Large-eddy simulation of dual-fuel ignition: Diesel spray injection into a lean methane-air mixture. Combustion and Flame, 2019, 199, 131-151.	5.2	82
43	Analysis of viscous fluid flow in a pressure-swirl atomizer using large-eddy simulation. International Journal of Multiphase Flow, 2019, 113, 371-388.	3.4	36
44	Numerical study on the fluid dynamical aspects of atomic layer deposition process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	15
45	Computational fluid dynamics modeling and experimental validation of heat transfer and fluid flow in the recovery boiler superheater region. Applied Thermal Engineering, 2018, 139, 222-238.	6.0	20
46	Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 2018, 191, 142-159.	5.2	91
47	Large-eddy simulations for hill terrains: validation with wind-tunnel and field measurements. Computational and Applied Mathematics, 2018, 37, 2017-2038.	1.3	8
48	Numerical assessment of wall modelling approaches in scale-resolving in-cylinder simulations. International Journal of Heat and Fluid Flow, 2018, 74, 154-172.	2.4	7
49	Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration. Applied Energy, 2018, 230, 486-505.	10.1	25
50	Optimizing the heat transfer performance of the recovery boiler superheaters using simulated annealing, surrogate modeling, and computational fluid dynamics. Energy, 2018, 160, 361-377.	8.8	24
51	Consistently formulated eddy-viscosity coefficient for <i>k</i> -equation model. Journal of Turbulence, 2018, 19, 959-994.	1.4	8
52	Hybrid LES/RANS with wall treatment in tangential and impinging flow configurations. International Journal of Heat and Fluid Flow, 2017, 65, 141-158.	2.4	10
53	Comparative study on chemical kinetic schemes for dual-fuel combustion of n-dodecane/methane blends. Fuel, 2017, 191, 62-76.	6.4	30
54	Mixing and evaporation analysis of a high-pressure SCR system using a hybrid LES-RANS approach. Energy, 2017, 120, 827-841.	8.8	27

#	Article	IF	CITATIONS
55	Late post-injection of biofuel blends in an optical diesel engine: Experimental and theoretical discussion on the inevitable wall-wetting effects on oil dilution. International Journal of Engine Research, 2017, 18, 645-656.	2.3	6
56	Influence of mesh deformation on the quality of large eddy simulations. International Journal for Numerical Methods in Fluids, 2016, 82, 171-197.	1.6	8
57	Nonlinear time series analysis from large eddy simulation of an internal combustion engine. International Journal of Heat and Fluid Flow, 2016, 57, 79-90.	2.4	8
58	Implicit LES Applied to Isothermal Swirling Coaxial Jets., 2016,,.		0
59	Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 2016, 167, 113-131.	5 . 2	124
60	Mixture formation in a direct injection gas engine: Numerical study on nozzle type, injection pressure and injection timing effects. Energy, 2016, 94, 542-556.	8.8	49
61	DNSLab: A gateway to turbulent flow simulation in Matlab. Computer Physics Communications, 2016, 203, 278-289.	7.5	18
62	Effect of charge air temperature on E85 dual-fuel diesel combustion. Fuel, 2015, 153, 6-12.	6.4	35
63	Large eddy simulation of a piston–cylinder assembly: The sensitivity of the in-cylinder flow field for residual intake and in-cylinder velocity structures. Computers and Fluids, 2015, 122, 123-135.	2.5	17
64	Imbalance wall functions with density and material property variation effects applied to engine heat transfer computational fluid dynamics simulations. International Journal of Engine Research, 2014, 15, 307-324.	2.3	18
65	On the implementation of low-dissipative Runge–Kutta projection methods for time dependent flows using OpenFOAM®. Computers and Fluids, 2014, 93, 153-163.	2.5	65
66	Large-eddy simulation on the effect of injection pressure and density on fuel jet mixing in gas engines. Fuel, 2014, 130, 241-250.	6.4	45
67	Visualization and analysis of the characteristics of transitional underexpanded jets. International Journal of Heat and Fluid Flow, 2013, 44, 140-154.	2.4	66
68	LARGE EDDY SIMULATION OF HIGH GAS DENSITY EFFECTS IN FUEL SPRAYS. Atomization and Sprays, 2013, 23, 297-325.	0.8	21
69	LARGE EDDY SIMULATION OF HIGH-VELOCITY FUEL SPRAYS: STUDYING MESH RESOLUTION AND BREAKUP MODEL EFFECTS FOR SPRAY A. Atomization and Sprays, 2013, 23, 419-442.	0.8	58
70	A low-dissipative, scale-selective discretization scheme for the Navier–Stokes equations. Computers and Fluids, 2012, 70, 195-205.	2.5	49
71	An experimental investigation on the flow structure and mixture formation of low pressure ratio wall-impinging jets by a natural gas injector. Journal of Natural Gas Science and Engineering, 2012, 9, 1-10.	4.4	30
72	Large Eddy Simulation of the Intake Flow in a Realistic Single Cylinder Configuration. , 2012, , .		8

#	Article	IF	Citations
73	Large-Eddy Simulation of Subsonic Jets. Journal of Physics: Conference Series, 2011, 318, 032052.	0.4	9
74	Experimental investigation of characteristics of transient low pressure wall-impinging gas jet. Journal of Physics: Conference Series, 2011, 318, 032047.	0.4	5
75	LARGE EDDY SIMULATION OF DROPLET STOKES NUMBER EFFECTS ON MIXTURE QUALITY IN FUEL SPRAYS. Atomization and Sprays, 2010, 20, 435-451.	0.8	8
76	LARGE EDDY SIMULATION OF DROPLET STOKES NUMBER EFFECTS ON TURBULENT SPRAY SHAPE. Atomization and Sprays, 2010, 20, 93-114.	0.8	20
77	DIESEL SPRAY VISUALIZATION AND SHOCKWAVES. Atomization and Sprays, 2010, 20, 177-189.	0.8	9
78	Effect of droplet size and breakup on spray shape: a priori study using Large-Eddy Simulation. , 2009, , .		0
79	Large-Eddy Simulation of Particle Size Distribution Effects on Turbulence in Sprays. , 2008, , .		3
80	Large-Eddy Simulation on the Effect of Droplet Size Distribution on Mixing of Passive Scalar in a Spray. , 2008 , , .		6
81	Front roughening in three-dimensional imbibition. European Physical Journal B, 2007, 56, 15-26.	1.5	14
82	Near Nozzle Diesel Spray Modeling and X-Ray Measurements. , 2006, , .		4
83	Host-parasite models on graphs. Physical Review E, 2005, 72, 046134.	2.1	6
84	Networks in metapopulation dynamics. European Physical Journal B, 2004, 38, 261-268.	1.5	11
85	Large Eddy Simulation of Flow over a Valve in a Simplified Cylinder Geometry. , 0, , .		5
86	An Experimental Study on High Pressure Pulsed Jets for DI Gas Engine Using Planar Laser-Induced Fluorescence. , 0 , , .		27
87	Characteristics of High Pressure Jets for Direct Injection Gas Engine. SAE International Journal of Fuels and Lubricants, 0, 6, 149-156.	0.2	13
88	An Optical Characterization of Dual-Fuel Combustion in a Heavy-Duty Diesel Engine. , 0, , .		19
89	Analysis of Gasoline Surrogate Combustion Chemistry with a Skeletal Mechanism. , 0, , .		6
90	A Diagnostic Approach to Assess the Effect of Temperature Stratification on the Combustion Modes of Gasoline Surrogates. Combustion Science and Technology, 0, , 1-32.	2.3	1