Arumugam Sivanesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8881963/publications.pdf

Version: 2024-02-01

35 1,087 21 335 33 papers citations h-index g-index

37 37 37 1768
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Rapid Electrochemical Nanosensing of S100 <i>$\tilde{A}\ddot{Y}$</i> in Blood. Journal of the Electrochemical Society, 2020, 167, 067518.	1.3	7
2	Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. Bulletin of the Chemical Society of Japan, 2019, 92, 216-244.	2.0	108
3	An electrochemical biosensor for the rapid detection of erythropoietin in blood. Talanta, 2018, 189, 636-640.	2.9	18
4	Rapid detection of mercury contamination in water by surface enhanced Raman spectroscopy. RSC Advances, 2017, 7, 21567-21575.	1.7	40
5	Investigation of thiophene flanked diketopyrrolopyrrole monomers with straight and branched alkyl chains and their electropolymerization study. Journal of Materials Research, 2017, 32, 2707-2718.	1.2	8
6	Towards interference free HPLC-SERS for the trace analysis of drug metabolites in biological fluids. Journal of Pharmaceutical and Biomedical Analysis, 2017, 136, 38-43.	1.4	33
7	A new class of electropolymerized conducting film from the pyrimidine family for the simultaneous determination of ascorbic acid and dopamine. RSC Advances, 2016, 6, 97391-97398.	1.7	7
8	A highly selective and simultaneous determination of ascorbic acid, uric acid and nitrite based on a novel poly-N-acetyl- <scp>l</scp> -methionine (poly-NALM) thin film. RSC Advances, 2016, 6, 96898-96907.	1.7	20
9	Generating monomeric 5-coordinated microperoxidase-11 using carboxylic acid functionalized silver nanoparticles: A surface-enhanced resonance Raman scattering analysis. Colloids and Surfaces B: Biointerfaces, 2016, 146, 722-730.	2.5	7
10	Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 633-641.	1.7	33
11	Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids. Journal of Nanobiotechnology, 2015, 13, 43.	4.2	30
12	Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta, 2015, 134, 732-738.	2.9	67
13	Molecular recognition of 2,4,6-trinitrotoluene by 6-aminohexanethiol and surface-enhanced Raman scattering sensor. Sensors and Actuators B: Chemical, 2015, 221, 273-280.	4.0	32
14	A homogeneous surface-enhanced Raman scattering platform for ultra-trace detection of trinitrotoluene in the environment. Analytical Methods, 2015, 7, 3863-3868.	1.3	24
15	Electrochemical current rectification–a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Biosensors and Bioelectronics, 2015, 66, 62-68.	5. 3	34
16	Towards improved precision in the quantification of surface-enhanced Raman scattering (SERS) enhancement factors: a renewed approach. Analyst, The, 2015, 140, 489-496.	1.7	13
17	Electrochemical pathway for the quantification of SERS enhancement factor. Electrochemistry Communications, 2014, 49, 103-106.	2.3	5
18	Nanostructured silver–gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst, The, 2014, 139, 1037.	1.7	110

#	Article	IF	Citations
19	Potentialâ€Dependent Surfaceâ€Enhanced Resonance Raman Spectroscopy at Nanostructured TiO ₂ : A Case Study on Cytochrome b ₅ . Small, 2013, 9, 4175-4181.	5.2	63
20	Regenerative silver nanoparticles for SERRS investigation of metmyoglobin with conserved heme pocket. RSC Advances, 2013, 3, 6839.	1.7	7
21	Tunable Electric Field Enhancement and Redox Chemistry on TiO ₂ Island Films via Covalent Attachment to Ag or Au Nanostructures. Journal of Physical Chemistry C, 2013, 117, 11866-11872.	1.5	10
22	Tailored silica coated Ag nanoparticles for non-invasive surface enhanced Raman spectroscopy of biomolecular targets. RSC Advances, 2012, 2, 805-808.	1.7	20
23	Complementary Surface-Enhanced Resonance Raman Spectroscopic Biodetection of Mixed Protein Solutions by Chitosan- and Silica-Coated Plasmon-Tuned Silver Nanoparticles. Analytical Chemistry, 2012, 84, 5759-5764.	3.2	24
24	Plasmon-Tuned Silver Colloids for SERRS Analysis of Methemoglobin with Preserved Nativity. Langmuir, 2012, 28, 14357-14363.	1.6	20
25	Fabrication of optochemical and electrochemical sensors using thin films of porphyrin and phthalocyanine derivatives. Journal of Chemical Sciences, 2012, 124, 1315-1325.	0.7	27
26	Functionalized Ag nanoparticles with tunable optical properties for selective protein analysis. Chemical Communications, 2011, 47, 3553.	2.2	46
27	Highly Sensitive Electrochemical Sensor for Nitric Oxide Using the Selfâ€Assembled Monolayer of 1,8,15,22‶etraaminophthalocyanatocobalt(II) on Glassy Carbon Electrode. Electroanalysis, 2010, 22, 639-644.	1.5	22
28	Electrochemical and spectral studies of self-assembled monolayer of 1,8,15,22-tetraaminophthalocyanatocobalt(II) on indium tin oxide surface. Journal of Electroanalytical Chemistry, 2009, 634, 64-67.	1.9	5
29	Adsorption thermodynamics and kinetics study for the self-assembly of 1,8,15,22-tetraaminophthalocyanatocobalt(II) on glassy carbon surface. Electrochimica Acta, 2009, 54, 7458-7463.	2.6	22
30	Selective Electrochemical Epinephrine Sensor Using Selfâ€Assembled Monomolecular Film of 1,8,15,22â€Tetraaminophthalocyanatonickel(II) on Gold Electrode. Electroanalysis, 2008, 20, 2340-2346.	1.5	22
31	Amino group positions dependent morphology and coverage of electropolymerized metallophthalocyanine (M=Ni and Co) films on electrode surfaces. Electrochimica Acta, 2008, 53, 6629-6635.	2.6	29
32	Amino Group Position Dependent Orientation of Self-Assembled Monomolecular Films of Tetraaminophthalocyanatocobalt(II) on Au Surfaces. Langmuir, 2008, 24, 2186-2190.	1.6	31
33	Charge-Transfer Interaction of Aromatic Thiols with 2,3-Dichloro-5,6-dicyano- <i>p</i> >benzoquinone: Spectral and Quantum Mechanical Studies. Journal of Physical Chemistry A, 2007, 111, 12086-12092.	1.1	17
34	Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode. Electrochimica Acta, 2007, 52, 8118-8124.	2.6	72
35	Determination of l-dopa using electropolymerized $3,3\hat{a}\in^2,3\hat{a}\in^3,3\hat{a}\in^3$ -tetraaminophthalocyanatonickel(II) film on glassy carbon electrode. Biosensors and Bioelectronics, 2007, 23, 708-713.	5.3	52