Derek J Gingerich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8881902/publications.pdf

Version: 2024-02-01

11 papers	1,344 citations	1040056 9 h-index	11 g-index
11	11	11	1774
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 , 6803 - 6808 .	7.1	410
2	Global and Hormone-Induced Gene Expression Changes during Shoot Development in Arabidopsis. Plant Cell, 2002, 14, 2771-2785.	6.6	186
3	The HECT ubiquitin-protein ligase (UPL) family inArabidopsis: UPL3 has a specific role in trichome development. Plant Journal, 2003, 35, 729-742.	5.7	186
4	The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling typeâ€⊋ ACC synthase levels. Plant Journal, 2009, 57, 332-345.	5.7	166
5	Cullins 3a and 3b Assemble with Members of the Broad Complex/Tramtrack/Bric-a-Brac (BTB) Protein Family to Form Essential Ubiquitin-Protein Ligases (E3s) in Arabidopsis*. Journal of Biological Chemistry, 2005, 280, 18810-18821.	3.4	142
6	Large-Scale, Lineage-Specific Expansion of a Bric-a-Brac/Tramtrack/Broad Complex Ubiquitin-Ligase Gene Family in Rice. Plant Cell, 2007, 19, 2329-2348.	6.6	96
7	KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4120-E4129.	7.1	53
8	An Arabidopsis immunophilin, AtFKBP12, binds to AtFIP37 (FKBP interacting protein) in an interaction that is disrupted by FK506. Plant Journal, 1998, 15, 783-789.	5.7	51
9	The Light-Response BTB1 and BTB2 Proteins Assemble Nuclear Ubiquitin Ligases That Modify Phytochrome B and D Signaling in Arabidopsis Â. Plant Physiology, 2012, 160, 118-134.	4.8	49
10	Editorial: Structure, Function, and Evolution of E3 Ligases and Targets. Frontiers in Plant Science, 2021, 12, 767281.	3.6	3
11	A misannotated locus positively influencing Arabidopsis seed germination is deconvoluted using multiple methods, including surrogate splicing. Plant Gene, 2017, 10, 74-85.	2.3	2