Ilayaraja Muthuramu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8880743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Remnant Lipoproteins in Apo E Deficient Mice Induce Coronary Atherosclerosis following Transverse Aortic Constriction and Aggravate the Development of Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure. Biomedicines, 2022, 10, 1592.	1.4	0
2	Mesangial matrix expansion in a novel mouse model of diabetic kidney disease associated with the metabolic syndrome. Journal of Nephropathology, 2021, 10, e17-e17.	0.1	1
3	Administration of apo A-I (Milano) nanoparticles reverses pathological remodelling, cardiac dysfunction, and heart failure in a murine model of HFpEF associated with hypertension. Scientific Reports, 2020, 10, 8382.	1.6	13
4	Cholesterol-Lowering Gene Therapy Prevents Heart Failure with Preserved Ejection Fraction in Obese Type 2 Diabetic Mice. International Journal of Molecular Sciences, 2019, 20, 2222.	1.8	8
5	Effective Treatment of Diabetic Cardiomyopathy and Heart Failure with Reconstituted HDL (Milano) in Mice. International Journal of Molecular Sciences, 2019, 20, 1273.	1.8	29
6	HDL dysfunction, function, and heart failure. Aging, 2019, 11, 293-294.	1.4	10
7	Cholesterol lowering attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia. Aging, 2019, 11, 6872-6891.	1.4	11
8	Reconstituted HDL (Milano) Treatment Efficaciously Reverses Heart Failure with Preserved Ejection Fraction in Mice. International Journal of Molecular Sciences, 2018, 19, 3399.	1.8	20
9	Successful treatment of established heart failure in mice with recombinant HDL (Milano). British Journal of Pharmacology, 2018, 175, 4167-4182.	2.7	25
10	Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in Scarb1 -Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2028-2040.	1.1	24
11	New perspectives on biological HDL-targeted therapies. Expert Opinion on Biological Therapy, 2017, 17, 793-796.	1.4	8
12	Cholesterol-Lowering Gene Therapy Counteracts the Development of Non-ischemic Cardiomyopathy in Mice. Molecular Therapy, 2017, 25, 2513-2525.	3.7	13
13	Selective HDL-Raising Human Apo A-I Gene Therapy Counteracts Cardiac Hypertrophy, Reduces Myocardial Fibrosis, and Improves Cardiac Function in Mice with Chronic Pressure Overload. International Journal of Molecular Sciences, 2017, 18, 2012.	1.8	27
14	Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis. International Journal of Molecular Sciences, 2017, 18, 1565.	1.8	22
15	Apolipoprotein A-I gene transfer exerts immunomodulatory effects and reduces vascular inflammation and fibrosis in ob/ob mice. Journal of Inflammation, 2016, 13, 25.	1.5	21
16	Role of lipids and lipoproteins in myocardial biology and in the development of heart failure. Clinical Lipidology, 2015, 10, 329-342.	0.4	7
17	Selective homocysteine-lowering gene transfer attenuates pressure overload-induced cardiomyopathy via reduced oxidative stress. Journal of Molecular Medicine, 2015, 93, 609-618.	1.7	33
18	The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals, 2014, 7, 419-432.	1.7	26

Ilayaraja Muthuramu

#	Article	IF	CITATIONS
19	Permanent Ligation of the Left Anterior Descending Coronary Artery in Mice: A Model of Post-myocardial Infarction Remodelling and Heart Failure. Journal of Visualized Experiments, 2014, , .	0.2	29
20	Pleiotropic Effects of HDL: Towards New Therapeutic Areas for HDL-Targeted Interventions. Current Molecular Medicine, 2014, 14, 481-503.	0.6	23
21	Beneficial effects of selective HDL-raising gene transfer on survival, cardiac remodelling and cardiac function after myocardial infarction in mice. Gene Therapy, 2013, 20, 1053-1061.	2.3	35
22	Selective Homocysteine Lowering Gene Transfer Improves Infarct Healing, Attenuates Remodelling, and Enhances Diastolic Function after Myocardial Infarction in Mice. PLoS ONE, 2013, 8, e63710.	1.1	8
23	The Liver as a Target Organ for Gene Therapy: State of the Art, Challenges, and Future Perspectives. Pharmaceuticals, 2012, 5, 1372-1392.	1.7	33
24	Protein Tyrosine Phosphatase SHP2 Mediates Chronic Insulin-Induced Endothelial Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1943-1950.	1.1	34
25	Lipid Lowering and HDL Raising Gene Transfer Increase Endothelial Progenitor Cells, Enhance Myocardial Vascularity, and Improve Diastolic Function. PLoS ONE, 2012, 7, e46849.	1.1	25
26	Correction of endothelial dysfunction after selective homocysteine lowering gene therapy reduces arterial thrombogenicity but has no effect on atherogenesis. Journal of Molecular Medicine, 2011, 89, 1051-1058.	1.7	11
27	Chick Embryo Partial Ischemia Model: A New Approach to Study Ischemia Ex Vivo. PLoS ONE, 2010, 5, e10524.	1.1	14