
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8880633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GSPE pre-treatment protects against long-term cafeteria diet-induced mitochondrial and inflammatory affectations in the hippocampus of rats. Nutritional Neuroscience, 2022, 25, 2627-2637.	1.5	1
2	Lipocalin, Resistin and Gut Microbiota-Derived Propionate Could Be Used to Predict Metabolic Bariatric Surgery Selected Outcomes. Processes, 2022, 10, 143.	1.3	1
3	Functional and genomic comparative study of the bitter taste receptor family TAS2R: Insight into the role of human TAS2R5. FASEB Journal, 2022, 36, e22175.	0.2	4
4	Effect of an Acute Insect Preload vs. an Almond Preload on Energy Intake, Subjective Food Consumption and Intestinal Health in Healthy Young Adults. Nutrients, 2022, 14, 1463.	1.7	2
5	Application of emerging technologies to obtain legume protein isolates with improved technoâ€functional properties and health effects. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2200-2232.	5.9	20
6	GLP1 Exerts Paracrine Activity in the Intestinal Lumen of Human Colon. International Journal of Molecular Sciences, 2022, 23, 3523.	1.8	1
7	The Hidden One: What We Know About Bitter Taste Receptor 39. Frontiers in Endocrinology, 2022, 13, 854718.	1.5	9
8	Editorial: Insects as Food and Feed. Frontiers in Veterinary Science, 2022, 9, 873765.	0.9	3
9	Molecular composition of lipid and protein fraction of almond, beef and lesser mealworm after in vitro simulated gastrointestinal digestion and correlation with the hormone-stimulating properties of the digesta. Food Research International, 2022, 158, 111499.	2.9	8
10	Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect. Nutrients, 2022, 14, 2608.	1.7	3
11	Protective properties of grape-seed proanthocyanidins in human ex vivo acute colonic dysfunction induced by dextran sodium sulfate. European Journal of Nutrition, 2021, 60, 79-88.	1.8	15
12	Glucagon-like peptide-1 regulation by food proteins and protein hydrolysates. Nutrition Research Reviews, 2021, 34, 259-275.	2.1	12
13	Glucagon Shows Higher Sensitivity than Insulin to Grapeseed Proanthocyanidin Extract (GSPE) Treatment in Cafeteria-Fed Rats. Nutrients, 2021, 13, 1084.	1.7	4
14	Grape-Seed Proanthocyanidin Extract Reverts Obesity-Related Metabolic Derangements in Aged Female Rats. Nutrients, 2021, 13, 2059.	1.7	9
15	Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients, 2020, 12, 130.	1.7	60
16	A Ten-Day Grape Seed Procyanidin Treatment Prevents Certain Ageing Processes in Female Rats over the Long Term. Nutrients, 2020, 12, 3647.	1.7	10
17	Gastrointestinally Digested Protein from the Insect Alphitobius diaperinus Stimulates a Different Intestinal Secretome than Beef or Almond, Producing a Differential Response in Food Intake in Rats. Nutrients, 2020, 12, 2366.	1.7	9
18	Modulation of Food Intake by Differential TAS2R Stimulation in Rat. Nutrients, 2020, 12, 3784.	1.7	16

#	Article	IF	CITATIONS
19	Effects of Flavanols on Enteroendocrine Secretion. Biomolecules, 2020, 10, 844.	1.8	11
20	Long Term Exposure to a Grape Seed Proanthocyanidin Extract Enhances Lâ€Cell Differentiation in Intestinal Organoids. Molecular Nutrition and Food Research, 2020, 64, e2000303.	1.5	17
21	Mining large databases to find new leads with low similarity to known actives: application to find new DPP-IV inhibitors. Future Medicinal Chemistry, 2019, 11, 1387-1401.	1.1	1
22	Proanthocyanidins Limit Adipose Accrual Induced by a Cafeteria Diet, Several Weeks after the End of the Treatment. Genes, 2019, 10, 598.	1.0	6
23	Antihyperglycemic effect of a chicken feet hydrolysate <i>via</i> the incretin system: DPP-IV-inhibitory activity and GLP-1 release stimulation. Food and Function, 2019, 10, 4062-4070.	2.1	24
24	Grape-Seed Proanthocyanidins are Able to Reverse Intestinal Dysfunction and Metabolic Endotoxemia Induced by a Cafeteria Diet in Wistar Rats. Nutrients, 2019, 11, 979.	1.7	29
25	Grape Seed Proanthocyanidins Target the Enteroendocrine System in Cafeteriaâ€Dietâ€Fed Rats. Molecular Nutrition and Food Research, 2019, 63, e1800912.	1.5	17
26	Long-Lasting Effects of GSPE on Ileal GLP-1R Gene Expression Are Associated with a Hypomethylation of the GLP-1R Promoter in Female Wistar Rats. Biomolecules, 2019, 9, 865.	1.8	9
27	Protective Effect of Proanthocyanidins in a Rat Model of Mild Intestinal Inflammation and Impaired Intestinal Permeability Induced by LPS. Molecular Nutrition and Food Research, 2019, 63, e1800720.	1.5	50
28	Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food and Function, 2018, 9, 1672-1682.	2.1	87
29	Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis. Molecular Metabolism, 2018, 11, 18-32.	3.0	14
30	The co-administration of proanthocyanidins and an obesogenic diet prevents the increase in intestinal permeability and metabolic endotoxemia derived to the diet. Journal of Nutritional Biochemistry, 2018, 62, 35-42.	1.9	25
31	Novel ex Vivo Experimental Setup to Assay the Vectorial Transepithelial Enteroendocrine Secretions of Different Intestinal Segments. Journal of Agricultural and Food Chemistry, 2018, 66, 11622-11629.	2.4	3
32	Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients, 2018, 10, 315.	1.7	24
33	Effects of flavanols on the enteroendocrine system: Repercussions on food intake. Critical Reviews in Food Science and Nutrition, 2017, 57, 326-334.	5.4	23
34	A specific dose of grape seed-derived proanthocyanidins to inhibit body weight gain limits food intake and increases energy expenditure in rats. European Journal of Nutrition, 2017, 56, 1629-1636.	1.8	43
35	Chronic supplementation with dietary proanthocyanidins protects from dietâ€induced intestinal alterations in obese rats. Molecular Nutrition and Food Research, 2017, 61, 1601039.	1.5	54
36	Strategy for limiting food intake using food components aimed at multiple targets in the gastrointestinal tract. Trends in Food Science and Technology, 2017, 68, 113-129.	7.8	6

#	Article	IF	CITATIONS
37	Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract. Food and Nutrition Research, 2017, 61, 1321347.	1.2	22
38	Flavonoids as Protective Agents Against Diet-Induced Oxidative Damage at Gastrointestinal Tract. , 2017, , 327-338.		0
39	Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract. Nutrients, 2016, 8, 652.	1.7	16
40	Dietary Proanthocyanidin Modulation of Pancreatic \hat{I}^2 Cells. , 2016, , 197-210.		0
41	Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutrition Research Reviews, 2016, 29, 234-248.	2.1	160
42	Identification of a nutrient sensing transcriptional network in monocytes by using inbred rat models of cafeteria diet. DMM Disease Models and Mechanisms, 2016, 9, 1231-1239.	1.2	10
43	Subchronic treatment with grape-seed phenolics inhibits ghrelin production despite a short-term stimulation of ghrelin secretion produced by bitter-sensing flavanols. Molecular Nutrition and Food Research, 2016, 60, 2554-2564.	1.5	30
44	Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food and Function, 2016, 7, 483-490.	2.1	48
45	Leptin signal transduction underlies the differential metabolic response of LEW and WKY rats to cafeteria diet. Journal of Molecular Endocrinology, 2016, 56, 1-10.	1.1	15
46	Antioxidant effects of proanthocyanidinâ€rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa. Journal of the Science of Food and Agriculture, 2016, 96, 178-182.	1.7	35
47	Procyanidins and docosahexaenoic acid suppress inflammation and boost immune system in cafeteria diet-fed rats. Journal of Functional Foods, 2015, 15, 61-71.	1.6	14
48	Procyanidin B ₂ inhibits inflammasomeâ€mediated ILâ€1β production in lipopolysaccharideâ€stimulated macrophages. Molecular Nutrition and Food Research, 2015, 59, 262-269.	1.5	71
49	Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chemistry, 2014, 149, 277-284.	4.2	66
50	A grape seed extract increases active glucagon-like peptide-1 levels after an oral glucose load in rats. Food and Function, 2014, 5, 2357.	2.1	69
51	Grape-Seed Procyanidins Prevent the Cafeteria-Diet-Induced Decrease of Glucagon-Like Peptide-1 Production. Journal of Agricultural and Food Chemistry, 2014, 62, 1066-1072.	2.4	41
52	Gallic Acid Is an Active Component for the Anticarcinogenic Action of Grape Seed Procyanidins in Pancreatic Cancer Cells. Nutrition and Cancer, 2014, 66, 88-96.	0.9	35
53	Grape-seed procyanidins modulate cellular membrane potential and nutrient-induced GLP-1 secretion in STC-1 cells. American Journal of Physiology - Cell Physiology, 2014, 306, C485-C492.	2.1	30
54	Chronic intake of proanthocyanidins and docosahexaenoic acid improves skeletal muscle oxidative capacity in diet-obese rats. Journal of Nutritional Biochemistry, 2014, 25, 1003-1010.	1.9	34

#	Article	IF	CITATIONS
55	Procyanidins and Their Healthy Protective Effects Against Type 2 Diabetes. Current Medicinal Chemistry, 2014, 22, 39-50.	1.2	82
56	Grape seed procyanidins improve β-cell functionality under lipotoxic conditions due to their lipid-lowering effect. Journal of Nutritional Biochemistry, 2013, 24, 948-953.	1.9	29
57	Procyanidins Modulate MicroRNA Expression in Pancreatic Islets. Journal of Agricultural and Food Chemistry, 2013, 61, 355-363.	2.4	35
58	Procyanidins target mesenteric adipose tissue in Wistar lean rats and subcutaneous adipose tissue in Zucker obese rat. Food Chemistry, 2013, 141, 160-166.	4.2	15
59	Effects of grape seed procyanidin extract over low-grade chronic inflammation of obese Zucker fa/fa rats. Food Research International, 2013, 53, 319-324.	2.9	9
60	Grape seed procyanidin extract modulates proliferation and apoptosis of pancreatic beta-cells. Food Chemistry, 2013, 138, 524-530.	4.2	38
61	Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats. Free Radical Biology and Medicine, 2013, 60, 107-114.	1.3	56
62	Grape Seed Procyanidin Extract Improves Insulin Production but Enhances Bax Protein Expression in Cafeteria-Treated Male Rats. International Journal of Food Science, 2013, 2013, 1-7.	0.9	9
63	The effects of a cafeteria diet on insulin production and clearance in rats. British Journal of Nutrition, 2012, 108, 1155-1162.	1.2	36
64	Procyanidins Improve some Disrupted Glucose Homoeostatic Situations: An Analysis of Doses and Treatments According to Different Animal Models. Critical Reviews in Food Science and Nutrition, 2012, 52, 569-584.	5.4	44
65	Omega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-κB activation through a p105/p50 regulatory mechanism in macrophage inflammation. Biochemical Journal, 2012, 441, 653-663.	1.7	55
66	Procyanidins modify insulinemia by affecting insulin production and degradation. Journal of Nutritional Biochemistry, 2012, 23, 1565-1572.	1.9	35
67	Pancreatic islet proteome profile in Zucker fatty rats chronically treated with a grape seed procyanidin extract. Food Chemistry, 2012, 135, 1948-1956.	4.2	14
68	Enhanced anti-inflammatory effect of resveratrol and EPA in treated endotoxin-activated RAW 264.7 macrophages. British Journal of Nutrition, 2012, 108, 1562-1573.	1.2	33
69	CHAPTER 37. Isoflavones and Inflammation in Adipose Tissue and Implications for Health. Food and Nutritional Components in Focus, 2012, , 611-626.	0.1	0
70	Grape Seed-Derived Procyanidins Decrease Dipeptidyl-peptidase 4 Activity and Expression. Journal of Agricultural and Food Chemistry, 2012, 60, 9055-9061.	2.4	66
71	Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part I): Virtual Screening and Activity Assays. PLoS ONE, 2012, 7, e44971.	1.1	34
72	Identification of PPARgamma Partial Agonists of Natural Origin (I): Development of a Virtual Screening Procedure and In Vitro Validation. PLoS ONE, 2012, 7, e50816.	1.1	48

#	Article	IF	CITATIONS
73	Procyanidins and inflammation: Molecular targets and health implications. BioFactors, 2012, 38, 257-265.	2.6	97
74	Additive, antagonistic, and synergistic effects of procyanidins and polyunsaturated fatty acids over inflammation in RAW 264.7 macrophages activated by lipopolysaccharide. Nutrition, 2012, 28, 447-457.	1.1	30
75	Isoflavones reduce inflammation in 3T3-L1 adipocytes. Food Chemistry, 2011, 125, 513-520.	4.2	13
76	Adipose Triglyceride Lipase and Hormone-Sensitive Lipase Are Involved in Fat Loss in JunB-Deficient Mice. Endocrinology, 2011, 152, 2678-2689.	1.4	12
77	Identification of Human IKK-2 Inhibitors of Natural Origin (Part I): Modeling of the IKK-2 Kinase Domain, Virtual Screening and Activity Assays. PLoS ONE, 2011, 6, e16903.	1.1	23
78	Reconstruction of gene association network reveals a transmembrane protein required for adipogenesis and targeted by PPARÎ ³ . Cellular and Molecular Life Sciences, 2010, 67, 4049-4064.	2.4	38
79	Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin. Journal of Nutritional Biochemistry, 2010, 21, 476-481.	1.9	82
80	Effects of a grapeseed procyanidin extract (GSPE) on insulin resistanceâ~†. Journal of Nutritional Biochemistry, 2010, 21, 961-967.	1.9	99
81	Organotypic co-culture system to study plant extract bioactivity on hepatocytes. Food Chemistry, 2010, 122, 775-781.	4.2	18
82	Development of a Coculture System to Evaluate the Bioactivity of Plant Extracts on Pancreatic <i>β</i> -Cells. Planta Medica, 2010, 76, 1576-1581.	0.7	12
83	Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. International Journal of Obesity, 2009, 33, 1007-1012.	1.6	148
84	Bioactivity of Flavonoids on Insulinâ€Secreting Cells. Comprehensive Reviews in Food Science and Food Safety, 2008, 7, 299-308.	5.9	82
85	Differential transcriptional modulation of biological processes in adipocyte triglyceride lipase and hormone-sensitive lipase-deficient mice. Genomics, 2008, 92, 26-32.	1.3	36
86	Procyanidin Effects on Adipocyte-Related Pathologies. Critical Reviews in Food Science and Nutrition, 2006, 46, 543-550.	5.4	55
87	NPM-ALK Converts JUNB from a Tumor Suppressor to an Oncogene Blood, 2006, 108, 1448-1448.	0.6	Ο
88	Intracellular Mediators of Procyanidin-Induced Lipolysis in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry, 2005, 53, 262-266.	2.4	43
89	Metabolic Fate of Glucose on 3T3-L1 Adipocytes Treated with Grape Seed-Derived Procyanidin Extract (GSPE). Comparison with the Effects of Insulin. Journal of Agricultural and Food Chemistry, 2005, 53, 5932-5935.	2.4	26
90	Grape Seed-Derived Procyanidins Have an Antihyperglycemic Effect in Streptozotocin-Induced Diabetic Rats and Insulinomimetic Activity in Insulin-Sensitive Cell Lines. Endocrinology, 2004, 145, 4985-4990.	1.4	305

#	Article	IF	CITATIONS
91	Beneficial Effects of Proanthocyanidins on Intestinal Permeability and Its Relationship with Inflammation. , 0, , .		0