List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8880535/publications.pdf Version: 2024-02-01

		687363	414414
104	1,606	13	32
papers	citations	h-index	g-index
111	111	111	1286
all docs	docs citations	times ranked	citing authors

KVDDE CLETTE

#	Article	IF	CITATIONS
1	Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 760-771.	4.9	440
2	An Ultrasound Robotic System Using the Commercial Robot UR5. Frontiers in Robotics and AI, 2016, 3, .	3.2	85
3	A Survey of Self-Awareness and Its Application in Computing Systems. , 2011, , .		80
4	Adaptive variable neighborhood search for solving multi-objective facility layout problems with unequal area facilities. Swarm and Evolutionary Computation, 2013, 8, 1-12.	8.1	75
5	Architectural Aspects of Self-Aware and Self-Expressive Computing Systems: From Psychology to Engineering. Computer, 2015, 48, 62-70.	1.1	52
6	Real-world embodied AI through a morphologically adaptive quadruped robot. Nature Machine Intelligence, 2021, 3, 410-419.	16.0	40
7	Unsupervised Domain Adversarial Self-Calibration for Electromyography-Based Gesture Recognition. IEEE Access, 2020, 8, 177941-177955.	4.2	35
8	A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro Device. Lecture Notes in Computer Science, 2005, , 66-75.	1.3	31
9	Search Space Analysis of Evolvable Robot Morphologies. Lecture Notes in Computer Science, 2018, , 703-718.	1.3	28
10	Automatic calibration of a robot manipulator and multi 3D camera system. , 2016, , .		26
11	Real-world evolution adapts robot morphology and control to hardware limitations. , 2018, , .		26
12	Evolving Gaits for Physical Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation. Lecture Notes in Computer Science, 2013, , 540-549.	1.3	25
13	Intermediate Level FPGA Reconfiguration for an Online EHW Pattern Recognition System. , 2009, , .		23
14	BioSleeve: A natural EMG-based interface for HRI. , 2013, , .		23
15	Lamarckian Evolution of Simulated Modular Robots. Frontiers in Robotics and AI, 2019, 6, 9.	3.2	20
16	A Transferable Adaptive Domain Adversarial Neural Network for Virtual Reality Augmented EMG-Based Gesture Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 546-555.	4.9	20
17	Design of an adaptive interval type-2 fuzzy logic controller for the position control of a servo system with an intelligent sensor. , 2010, , .		18
18	An Online EHW Pattern Recognition System Applied to Face Image Recognition. , 2007, , 271-280.		18

#	Article	IF	CITATIONS
19	Comparing Evolvable Hardware to Conventional Classifiers for Electromyographic Prosthetic Hand Control. , 2008, , .		17
20	Classification of Electromyographic Signals: Comparing Evolvable Hardware to Conventional Classifiers. IEEE Transactions on Evolutionary Computation, 2013, 17, 46-63.	10.0	17
21	Online Evolution for a High-Speed Image Recognition System Implemented On a Virtex-II Pro FPGA. , 2007, , .		16
22	Partial Reconfiguration Applied in an On-line Evolvable Pattern Recognition System. , 2008, , .		16
23	Breaking the speed limit with multimode fast scanning of DNA by Endonuclease V. Nature Communications, 2018, 9, 5381.	12.8	14
24	MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics. Frontiers in Robotics and Al, 2021, 8, 639173.	3.2	13
25	A Comparison of Evolvable Hardware Architectures for Classification Tasks. Lecture Notes in Computer Science, 2008, , 22-33.	1.3	13
26	Evolution of artificial muscle-based robotic locomotion in PhysX. , 2010, , .		12
27	Some distance measures for morphological diversification in generative evolutionary robotics. , 2014, , ,		12
28	Effects of Selection Preferences on Evolved Robot Morphologies and Behaviors. , 2018, , .		12
29	Multi-Objective Convolutional Neural Networks for Robot Localisation and 3D Position Estimation in 2D Camera Images. , 2018, , .		12
30	Engaging with Robotic Swarms. ACM Transactions on Human-Robot Interaction, 2019, 8, 1-26.	4.1	12
31	Pareto Optimal Based Evolutionary Approach for Solving Multi-Objective Facility Layout Problem. Lecture Notes in Computer Science, 2009, , 159-168.	1.3	12
32	Evolutionary design of efficient and robust switching image filters. , 2011, , .		11
33	Multi-objective evolution of fast and stable gaits on a physical quadruped robotic platform. , 2016, , .		11
34	Combining MAP-Elites and Incremental Evolution to Generate Gaits forÂaÂMammalian Quadruped Robot. Lecture Notes in Computer Science, 2018, , 719-733.	1.3	11
35	A hox gene inspired generative approach to evolving robot morphology. , 2013, , .		10
36	Robot Localisation and 3D Position Estimation Using a Free-Moving Camera and Cascaded Convolutional Neural Networks. , 2018, , .		10

3

#	Article	IF	CITATIONS
37	Self-Modifying Morphology Experiments with DyRET: Dynamic Robot for Embodied Testing. , 2019, , .		10
38	Evolving a Repertoire of Controllers for a Multi-function Swarm. Lecture Notes in Computer Science, 2018, , 734-749.	1.3	10
39	An Online EHW Pattern Recognition System Applied to Sonar Spectrum Classification. Lecture Notes in Computer Science, 2007, , 1-12.	1.3	10
40	Evolving locomotion for a 12-DOF quadruped robot in simulated environments. BioSystems, 2013, 112, 102-106.	2.0	9
41	Overcoming Initial Convergence in Multi-objective Evolution of Robot Control and Morphology Using a Two-Phase Approach. Lecture Notes in Computer Science, 2017, , 825-836.	1.3	9
42	Dynamic mutation in MAP-Elites for robotic repertoire generation. , 2018, , .		9
43	Evolved embodied phase coordination enables robust quadruped robot locomotion. , 2019, , .		9
44	Real-World Reproduction of Evolved Robot Morphologies: Automated Categorization and Evaluation. Lecture Notes in Computer Science, 2015, , 771-782.	1.3	9
45	Evolutionary Approaches to the Three-dimensional Multi-pipe Routing Problem: A Comparative Study Using Direct Encodings. Lecture Notes in Computer Science, 2010, , 71-82.	1.3	9
46	A Comparison of Sampling Strategies for Parameter Estimation of a Robot Simulator. Lecture Notes in Computer Science, 2012, , 173-184.	1.3	9
47	How Different Encodings Affect Performance and Diversification when Evolving the Morphology and Control of 2D Virtual Creatures. , 2020, , .		9
48	Evolution of Impulse Bursts Noise Filters. , 2009, , .		8
49	Filling the reality gap: Using obstacles to promote robust gaits in evolutionary robotics. , 2014, , .		8
50	Memetic robot control evolution and adaption to reality. , 2016, , .		8
51	Comparing three online evolvable hardware implementations of a classification system. Genetic Programming and Evolvable Machines, 2018, 19, 211-234.	2.2	7
52	Environmental Adaptation of Robot Morphology and Control Through Real-world Evolution. Evolutionary Computation, 2021, 29, 1-21.	3.0	7
53	Towards a Framework for the Levels and Aspects of Self-aware Computing Systems. , 2017, , 51-85.		7
54	Multi-objective evolutionary approach for solving facility layout problem using local search. , 2010, , .		6

#	Article	IF	CITATIONS
55	Job Shop Scheduling with Transportation Delays and Layout Planning in Manufacturing Systems: A Multi-objective Evolutionary Approach. Lecture Notes in Computer Science, 2012, , 209-219.	1.3	6
56	Reference Architecture for Self-aware and Self-expressive Computing Systems. Natural Computing Series, 2016, , 37-49.	2.2	6
57	Transfer Learning for Unseen Robot Detection and Joint Estimation on a Multi-Objective Convolutional Neural Network. , 2018, , .		6
58	Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D Joint Position Estimation in a 2D Camera Image Using CNN. , 2019, , .		6
59	Quality and Diversity in Evolutionary Modular Robotics. , 2020, , .		6
60	Analysis of Lamarckian evolution in morphologically evolving robots. , 2017, , .		6
61	Coevolving heuristics for the Distributor's Pallet Packing Problem. , 2009, , .		5
62	A multi-objective evolutionary algorithm for solving integrated scheduling and layout planning problems in manufacturing systems. , 2012, , .		5
63	Decentralized harmonic synchronization in mobile music systems. , 2014, , .		5
64	Lookup table partial reconfiguration for an evolvable hardware classifier system. , 2014, , .		5
65	Field-Testing of High-Level Decentralized Controllers for a Multi-Function Drone Swarm. , 2018, , .		5
66	Experiences from Real-World Evolution with DyRET: Dynamic Robot for Embodied Testing. Communications in Computer and Information Science, 2019, , 58-68.	0.5	5
67	An Adaptive Local Search Based Genetic Algorithm for Solving Multi-objective Facility Layout Problem. Lecture Notes in Computer Science, 2010, , 540-550.	1.3	5
68	Coping with Resource Fluctuations: The Run-time Reconfigurable Functional Unit Row Classifier Architecture. Lecture Notes in Computer Science, 2010, , 250-261.	1.3	5
69	Establishing a New Course in Reconfigurable Logic System Design. , 2007, , .		4
70	Dynamic facility layout problem under uncertainty: a Pareto-optimality based multi-objective evolutionary approach. Open Computer Science, 2011, 1, .	1.7	4
71	Additive manufacturing of laminar flow cells for single-molecule experiments. Scientific Reports, 2019, 9, 16784.	3.3	4
72	A Framework for Automatic Behavior Generation in Multi-Function Swarms. Frontiers in Robotics and AI, 2020, 7, 579403.	3.2	4

#	Article	IF	CITATIONS
73	Continuous Adaptation in Robotic Systems by Indirect Online Evolution. , 2008, , .		3
74	Genetic algorithm using a modified backward pass heuristic for the dynamic facility layout problem *. Paladyn, 2011, 2, .	2.7	3
75	Investigating evolvable hardware classification for the BioSleeve electromyographic interface. , 2013, , .		3
76	Visual servoing of a medical ultrasound probe for needle insertion. , 2016, , .		3
77	Multi 3D camera mapping for predictive and reflexive robot manipulator trajectory estimation. , 2016, ,		3
78	Insights in evolutionary exploration of robot morphology spaces. , 2018, , .		3
79	On Restricting Real-Valued Genotypes in Evolutionary Algorithms. Lecture Notes in Computer Science, 2021, , 3-16.	1.3	3
80	Evolving Robots on Easy Mode: Towards a Variable Complexity Controller for Quadrupeds. Lecture Notes in Computer Science, 2019, , 616-632.	1.3	3
81	Online Evolvable Pattern Recognition Hardware. Studies in Computational Intelligence, 2009, , 41-54.	0.9	3
82	Indirect Online Evolution – A Conceptual Framework for Adaptation in Industrial Robotic Systems. Lecture Notes in Computer Science, 0, , 165-176.	1.3	3
83	An adaptive pattern recognition hardware with on-chip shift register-based partial reconfiguration. , 2008, , .		2
84	A Coevolutionary, Hyper Heuristic approach to the optimization of Three-dimensional Process Plant Layouts — A comparative study. , 2010, , .		2
85	Dynamic facility layout problem with hybrid genetic algorithm. , 2010, , .		2
86	Evolutionary digital circuit design with fast candidate solution establishment in field programmable gate arrays. , 2014, , .		2
87	Coevolutionary Learning of Neuromodulated Controllers for Multi-Stage and Gamified Tasks. , 2020, ,		2
88	Co-optimising Robot Morphology and Controller in a Simulated Open-Ended Environment. Lecture Notes in Computer Science, 2021, , 34-49.	1.3	2
89	Real world morphological evolution is feasible. , 2020, , .		2
90	Editorial: Evolving Robotic Morphologies. Frontiers in Robotics and AI, 2022, 9, 874853.	3.2	2

#	Article	IF	CITATIONS
91	Making Hardware Soft in Intelligent Systems. , 2007, , .		1
92	Networking-Enabling Enhancement for a Swarm of COTS Drones. , 2018, , .		1
93	Understanding Musical Predictions With an Embodied Interface for Musical Machine Learning. Frontiers in Artificial Intelligence, 2020, 3, 6.	3.4	1
94	Meta-heuristics for Improved RF Emitter Localization. Lecture Notes in Computer Science, 2017, , 207-223.	1.3	1
95	Evolving Locomotion for a Simulated 12-DOF Quadruped Robot. Lecture Notes in Computer Science, 2012, , 90-98.	1.3	1
96	Open-Ended Search for Environments and Adapted Agents Using MAP-Elites. Lecture Notes in Computer Science, 2022, , 651-666.	1.3	1
97	Evolutionary multi-objective clustering with adaptive local search. , 2010, , .		0
98	Benefits of lamarckian evolution for morphologically evolving robots. , 2017, , .		0
99	Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex. Communications Biology, 2021, 4, 876.	4.4	0
100	An Indirect Approach to the Three-Dimensional Multi-pipe Routing Problem. Lecture Notes in Computer Science, 2010, , 86-97.	1.3	0
101	The X2 Modular Evolutionary Robotics Platform. Lecture Notes in Computer Science, 2010, , 274-285.	1.3	0
102	Compensating Resource Fluctuations by Means of Evolvable Hardware. International Journal of Adaptive Resilient and Autonomic Systems, 2012, 3, 17-31.	0.3	0
103	Market-Based Control in Interactive Music Environments. Lecture Notes in Computer Science, 2013, , 439-458.	1.3	0
104	Evolving Neuromodulated Controllers in Variable Environments. , 2021, , .		0