
Jernej JorgaÄevski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8880483/publications.pdf

Version: 2024-02-01

IERNEL LORCA ÄEVSKI

#	Article	IF	CITATIONS
1	Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium, 2022, 101, 102503.	1.1	13
2	Neurotropic Viruses, Astrocytes, and COVID-19. Frontiers in Cellular Neuroscience, 2021, 15, 662578.	1.8	40
3	Plectin in the Central Nervous System and a Putative Role in Brain Astrocytes. Cells, 2021, 10, 2353.	1.8	11
4	Methods for Monitoring Endocytosis in Astrocytes. Methods in Molecular Biology, 2021, 2233, 93-100.	0.4	2
5	Nestin regulates vesicular dynamics in proliferative reactive astrocyte. Acta Physiologica, 2020, 228, e13409.	1.8	1
6	Insights into Cell Surface Expression, Supramolecular Organization, and Functions of Aquaporin 4 Isoforms in Astrocytes. Cells, 2020, 9, 2622.	1.8	25
7	Indirect Role of AQP4b and AQP4d Isoforms in Dynamics of Astrocyte Volume and Orthogonal Arrays of Particles. Cells, 2020, 9, 735.	1.8	12
8	The Diversity of Intermediate Filaments in Astrocytes. Cells, 2020, 9, 1604.	1.8	32
9	Astrocyte Specific Remodeling of Plasmalemmal Cholesterol Composition by Ketamine Indicates a New Mechanism of Antidepressant Action. Scientific Reports, 2019, 9, 10957.	1.6	29
10	ZIKV Strains Differentially Affect Survival of Human Fetal Astrocytes versus Neurons and Traffic of ZIKV-Laden Endocytotic Compartments. Scientific Reports, 2019, 9, 8069.	1.6	32
11	Astrocytes in Flavivirus Infections. International Journal of Molecular Sciences, 2019, 20, 691.	1.8	54
12	Ãngstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion. Molecular and Cellular Endocrinology, 2018, 463, 65-71.	1.6	13
13	Impaired αGDI Function in the X-Linked Intellectual Disability: The Impact on Astroglia Vesicle Dynamics. Molecular Neurobiology, 2017, 54, 2458-2468.	1.9	7
14	Astrocytic Vesicleâ€based Exocytosis in Cultures and Acutely Isolated Hippocampal Rodent Slices. Journal of Neuroscience Research, 2017, 95, 2152-2158.	1.3	8
15	AQP4e-Based Orthogonal Arrays Regulate Rapid Cell Volume Changes in Astrocytes. Journal of Neuroscience, 2017, 37, 10748-10756.	1.7	34
16	Sphingomimetic multiple sclerosis drug FTY720 activates vesicular synaptobrevin and augments neuroendocrine secretion. Scientific Reports, 2017, 7, 5958.	1.6	13
17	Exocytotic fusion pores as a target for therapy. Cell Calcium, 2017, 66, 71-77.	1.1	2
18	Exocytotic pore in a SNARE. Oncotarget, 2017, 8, 38082-38083.	0.8	1

Jernej JorgaÄevski

#	Article	IF	CITATIONS
19	Astrocyte Aquaporin Dynamics in Health and Disease. International Journal of Molecular Sciences, 2016, 17, 1121.	1.8	50
20	Subanesthetic doses of ketamine stabilize the fusion pore in a narrow flickering state in astrocytes. Journal of Neurochemistry, 2016, 138, 909-917.	2.1	26
21	Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cellular and Molecular Life Sciences, 2016, 73, 3719-3731.	2.4	53
22	Unproductive exocytosis. Journal of Neurochemistry, 2016, 137, 880-889.	2.1	9
23	Fusion Properties of Gliotransmitter Vesicles in Cultured Astrocytes. Biophysical Journal, 2015, 108, 102a.	0.2	Ο
24	Local electrostatic interactions determine the diameter of fusion pores. Channels, 2015, 9, 96-101.	1.5	4
25	Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and cAMP-Dependent Modulation of Exocytosis in Cultured Rat Lactotrophs. Journal of Neuroscience, 2014, 34, 15638-15647.	1.7	20
26	Single-vesicle architecture of synaptobrevin2 in astrocytes. Nature Communications, 2014, 5, 3780.	5.8	40
27	Exocytotic Fusion Pore Intermediates of Dense-Core Vesicles. Biophysical Journal, 2014, 106, 10a-11a.	0.2	Ο
28	Fusion Properties of Gliotransmitter Vesicles in Astrocytes. Biophysical Journal, 2014, 106, 526a.	0.2	0
29	Tick-Borne Encephalitis Virus Infects Rat Astrocytes but Does Not Affect Their Viability. PLoS ONE, 2014, 9, e86219.	1.1	52
30	Pathophysiology of Vesicle Dynamics in Astrocytes. , 2014, , 33-60.		1
31	Fusion Pores, SNAREs, and Exocytosis. Neuroscientist, 2013, 19, 160-174.	2.6	29
32	Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1228-1238.	1.2	12
33	Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Clia, 2013, 61, 917-928.	2.5	61
34	High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. Nature Protocols, 2013, 8, 1169-1183.	5.5	56
35	Vesicle size determines unitary exocytic properties and their sensitivity to sphingosine. Molecular and Cellular Endocrinology, 2013, 376, 136-147.	1.6	34
36	cAMP-Mediated Stabilization of Fusion Pores in Cultured Rat Pituitary Lactotrophs. Journal of Neuroscience, 2013, 33, 8068-8078.	1.7	33

Jernej JorgaÄevski

#	Article	IF	CITATIONS
37	Astrocytic Vesicle Mobility in Health and Disease. International Journal of Molecular Sciences, 2013, 14, 11238-11258.	1.8	48
38	Comparison of unitary exocytic events in pituitary lactotrophs and in astrocytes: modeling the discrete open fusion-pore states. Frontiers in Cellular Neuroscience, 2013, 7, 33.	1.8	4
39	Munc18–1, exocytotic fusion pore regulation and local membrane anisotropy. Communicative and Integrative Biology, 2012, 5, 74-77.	0.6	3
40	Fusion pore regulation in peptidergic vesicles. Cell Calcium, 2012, 52, 270-276.	1.1	8
41	Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy. Scientific World Journal, The, 2012, 2012, 1-7.	0.8	7
42	Erratum to "Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy― Scientific World Journal, The, 2012, 2012, 1-1.	0.8	5
43	Exploring the binding dynamics of BAR proteins. Cellular and Molecular Biology Letters, 2011, 16, 398-411.	2.7	6
44	How to Make a Stable Exocytotic Fusion Pore, Incompetent of Neurotransmitter and Hormone Release from the Vesicle Lumen?. Behavior Research Methods, 2011, 14, 45-61.	2.3	0
45	Munc18-1 Tuning of Vesicle Merger and Fusion Pore Properties. Journal of Neuroscience, 2011, 31, 9055-9066.	1.7	67
46	Fusion pore stability of peptidergic vesicles. Molecular Membrane Biology, 2010, 27, 65-80.	2.0	64
47	Life and death in aluminium-exposed cultures of rat lactotrophs studied by flow cytometry. Cell Biology and Toxicology, 2010, 26, 341-353.	2.4	3
48	Fusion Pore: An Evolutionary Invention of Nucleated Cells. European Review, 2010, 18, 347-364.	0.4	5
49	The Fusion Pore and Vesicle Cargo Discharge Modulation. Annals of the New York Academy of Sciences, 2009, 1152, 135-144.	1.8	16
50	Compound Exocytosis in Pituitary Cells. Annals of the New York Academy of Sciences, 2009, 1152, 63-75.	1.8	16
51	Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis. Neuron, 2009, 62, 683-694.	3.8	136
52	Fusion Pore Regulation of Peptidergic Vesicles. Biophysical Journal, 2009, 96, 99a.	0.2	0
53	Hypotonicity and peptide discharge from a single vesicle. American Journal of Physiology - Cell Physiology, 2008, 295, C624-C631.	2.1	26
54	Subnanometer Fusion Pores in Spontaneous Exocytosis of Peptidergic Vesicles. Journal of Neuroscience, 2007, 27, 4737-4746.	1.7	106

#	Article	IF	CITATIONS
55	Elementary properties of spontaneous fusion of peptidergic vesicles: fusion pore gating. Journal of Physiology, 2007, 585, 655-661.	1.3	29
56	Chapter 12 Exocytosis: The Pulsing Fusion Pore. Behavior Research Methods, 2006, , 345-364.	2.3	0