Naoya Shibata

List of Publications by Citations

Source: https://exaly.com/author-pdf/8879723/naoya-shibata-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

337 papers	11,915	54	101
	citations	h-index	g-index
353	14,448 ext. citations	7.1	6.49
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
337	Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. <i>Nature Materials</i> , 2016 , 15, 611-5	27	979
336	Photocatalytic water splitting with a quantum efficiency of almost unity. <i>Nature</i> , 2020 , 581, 411-414	50.4	533
335	Surface Modification of CoO(x) Loaded BiVOIPhotoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5053-60	16.4	436
334	Dynamics of annular bright field imaging in scanning transmission electron microscopy. <i>Ultramicroscopy</i> , 2010 , 110, 903-23	3.1	331
333	Grain boundary strengthening in alumina by rare earth impurities. <i>Science</i> , 2006 , 311, 212-5	33.3	327
332	A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2955-9	16.4	311
331	Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. <i>Applied Physics Letters</i> , 2009 , 95, 191913	3.4	304
330	Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. <i>Nature</i> , 2004 , 428, 730-3	50.4	264
329	Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. <i>Nature Catalysis</i> , 2018 , 1, 756-763	36.5	259
328	Differential phase-contrast microscopy at atomic resolution. <i>Nature Physics</i> , 2012 , 8, 611-615	16.2	247
327	Oxysulfide photocatalyst for visible-light-driven overall water splitting. <i>Nature Materials</i> , 2019 , 18, 827	-8372	222
326	Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. <i>Nature Energy</i> , 2017 , 2,	62.3	206
325	Direct atomic-resolution observation of two phases in the Li(1.2)Mn(0.567)Ni(0.166)Co(0.067)O2 cathode material for lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 5969-73	3 ^{16.4}	196
324	A formation mechanism of carbon nanotube films on SiC(0001). Applied Physics Letters, 2000, 77, 531-5.	3 3 .4	185
323	Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. <i>Energy and Environmental Science</i> , 2015 , 8, 1493-1500	35.4	170
322	Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. Angewandte Chemie - International Edition, 2014, 53, 11808-12	16.4	151
321	Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12780-3	16.4	147

320	Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. <i>Nano Letters</i> , 2010 , 10, 4668-	72 1.5	143
319	Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2227-30	16.4	140
318	Fabrication of a Core-Shell-Type Photocatalyst via Photodeposition of Group IV and V Transition Metal Oxyhydroxides: An Effective Surface Modification Method for Overall Water Splitting. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9627-34	16.4	135
317	Photocatalytic solar hydrogen production from water on a 100-m scale. <i>Nature</i> , 2021 , 598, 304-307	50.4	134
316	Large magnetoelectric coupling in magnetically short-range ordered BilliBeOIfilm. <i>Scientific Reports</i> , 2014 , 4, 5255	4.9	120
315	Highly Active GaN-Stabilized Ta N Thin-Film Photoanode for Solar Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4739-4743	16.4	110
314	Electric field imaging of single atoms. <i>Nature Communications</i> , 2017 , 8, 15631	17.4	107
313	Direct imaging of reconstructed atoms on TiO2 (110) surfaces. <i>Science</i> , 2008 , 322, 570-3	33.3	105
312	Direct Imaging of Hydrogen within a Crystalline Environment. <i>Applied Physics Express</i> , 2010 , 3, 116603	2.4	103
311	Nonstoichiometric dislocation cores in alpha-alumina. <i>Science</i> , 2007 , 316, 82-5	33.3	101
311	Nonstoichiometric dislocation cores in alpha-alumina. <i>Science</i> , 2007 , 316, 82-5 Atomic-scale imaging of individual dopant atoms in a buried interface. <i>Nature Materials</i> , 2009 , 8, 654-8		101 96
310	Atomic-scale imaging of individual dopant atoms in a buried interface. <i>Nature Materials</i> , 2009 , 8, 654-8 High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia	27	96
310	Atomic-scale imaging of individual dopant atoms in a buried interface. <i>Nature Materials</i> , 2009 , 8, 654-8 High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals. <i>Acta Materialia</i> , 2004 , 52, 2349-2357 Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via	27 8.4	96 96
310 309 308	Atomic-scale imaging of individual dopant atoms in a buried interface. <i>Nature Materials</i> , 2009 , 8, 654-8 High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals. <i>Acta Materialia</i> , 2004 , 52, 2349-2357 Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. <i>Ultramicroscopy</i> , 2015 , 159 Pt 1, 124-37 New area detector for atomic-resolution scanning transmission electron microscopy. <i>Journal of</i>	27 8.4	96 96 92
310 309 308 307	Atomic-scale imaging of individual dopant atoms in a buried interface. <i>Nature Materials</i> , 2009 , 8, 654-8 High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals. <i>Acta Materialia</i> , 2004 , 52, 2349-2357 Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. <i>Ultramicroscopy</i> , 2015 , 159 Pt 1, 124-37 New area detector for atomic-resolution scanning transmission electron microscopy. <i>Journal of Electron Microscopy</i> , 2010 , 59, 473-9 Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. <i>Physical Review Letters</i>	27 8.4 3.1	9696929292
310 309 308 307 306	Atomic-scale imaging of individual dopant atoms in a buried interface. <i>Nature Materials</i> , 2009 , 8, 654-8 High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals. <i>Acta Materialia</i> , 2004 , 52, 2349-2357 Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. <i>Ultramicroscopy</i> , 2015 , 159 Pt 1, 124-37 New area detector for atomic-resolution scanning transmission electron microscopy. <i>Journal of Electron Microscopy</i> , 2010 , 59, 473-9 Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. <i>Physical Review Letters</i> , ,2006 , 97, 106802 A Novel Photocathode Material for Sunlight-Driven Overall Water Splitting: Solid Solution of ZnSe	27 8.4 3.1 7.4	9696929292

302	Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy. <i>Scientific Reports</i> , 2015 , 5, 10040	4.9	89
301	Structure, energy and solute segregation behaviour of [110] symmetric tilt grain boundaries in yttria-stabilized cubic zirconia. <i>Philosophical Magazine</i> , 2004 , 84, 2381-2415	1.6	86
300	Direct observation of individual dislocation interaction processes with grain boundaries. <i>Science Advances</i> , 2016 , 2, e1501926	14.3	85
299	Yttrium doping effect on oxygen grain boundary diffusion in 🗚 203. <i>Acta Materialia</i> , 2007 , 55, 6627-66	538. ₄	83
298	Crystalline Grain Interior Configuration Affects Lithium Migration Kinetics in Li-Rich Layered Oxide. <i>Nano Letters</i> , 2016 , 16, 2907-15	11.5	83
297	Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe photocathodes modified with CdS and CuGaSe. <i>Chemical Science</i> , 2015 , 6, 894-901	9.4	80
296	Direct observation of II domain boundary core structure in magnetic skyrmion lattice. <i>Science Advances</i> , 2016 , 2, e1501280	14.3	80
295	Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. <i>Nature Catalysis</i> , 2020 , 3, 932-940	36.5	80
294	Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H Evolution Photocatalysts. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3892-3896	6.4	78
293	Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide. <i>Nature Communications</i> , 2015 , 6, 7120	17.4	77
292	Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. <i>Nature Communications</i> , 2017 , 8, 15549	17.4	74
291	Effects of Rare-Earth (RE) Intergranular Adsorption on the Phase Transformation, Microstructure Evolution, and Mechanical Properties in Silicon Nitride with RE2O3+MgO Additives: RE=La, Gd, and Lu. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 2328-2336	3.8	73
290	Atomically ordered solute segregation behaviour in an oxide grain boundary. <i>Nature Communications</i> , 2016 , 7, 11079	17.4	70
289	Interface structures of gold nanoparticles on TiO2 (110). <i>Physical Review Letters</i> , 2009 , 102, 136105	7.4	68
288	Defect-Rich NiCeOx Electrocatalyst with Ultrahigh Stability and Low Overpotential for Water Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 1605-1611	13.1	64
287	A new sealed lithium-peroxide battery with a co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte. <i>Scientific Reports</i> , 2014 , 4, 5684	4.9	61
286	A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm. <i>Angewandte Chemie</i> , 2015 , 127, 2998-3002	3.6	56
285	Atomic-Scale Measurement of Flexoelectric Polarization at SrTiO_{3} Dislocations. <i>Physical Review Letters</i> , 2018 , 120, 267601	7.4	55

(2017-2015)

28	Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride. <i>Nature Communications</i> , 2015 , 6, 6327	17.4	54	
28	Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4544-4552	13	52	
28	On the quantitativeness of EDS STEM. <i>Ultramicroscopy</i> , 2015 , 151, 150-159	3.1	51	
28	Assessment of Strain-Generated Oxygen Vacancies Using SrTiOBicrystals. <i>Nano Letters</i> , 2015 , 15, 47	129- <u>34</u> .5	50	
28	Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy. <i>Accounts of Chemical Research</i> , 2017 , 50, 1502-1512	24.3	49	
27	Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nature Communications, 2016 , 7, 11318	17.4	48	
27	Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets. <i>Advanced Functional Materials</i> , 2016 , 26, 7011-7019	15.6	47	
27	Efficient Solar-Driven Water Oxidation over Perovskite-Type BaNbO2N Photoanodes Absorbing Visible Light up to 740 nm. <i>Advanced Energy Materials</i> , 2018 , 8, 1800094	21.8	47	
27	Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7415-7422	13	46	
27	Atomic structures and oxygen dynamics of CeO2 grain boundaries. <i>Scientific Reports</i> , 2016 , 6, 20288	4.9	46	
27	Sequential cocatalyst decoration on BaTaON towards highly-active Z-scheme water splitting. Nature Communications, 2021 , 12, 1005	17.4	46	
27	Direct electric field imaging of graphene defects. <i>Nature Communications</i> , 2018 , 9, 3878	17.4	46	
27	Bonding nature of metal/oxide incoherent interfaces by first-principles calculations. <i>Physical Review B</i> , 2006 , 74,	3.3	45	
27	Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: Subnanometer observations and theory. <i>Physical Review B</i> , 2005 , 72,	3.3	45	
27	Oxygen Pipe Diffusion in Sapphire Basal Dislocation. <i>Journal of the Ceramic Society of Japan</i> , 2006 , 114, 1013-1017		41	
26	Observations on the Influence of Secondary Me Oxide Additives (Me=Si, Al, Mg) on the Microstructural Evolution and Mechanical Behavior of Silicon Nitride Ceramics Containing RE2O3 (RE=La, Gd, Lu). <i>Journal of the American Ceramic Society</i> , 2010 , 93, 570-580	3.8	40	
26	Direct oxygen imaging within a ceramic interface, with some observations upon the dark contrast at the grain boundary. <i>Ultramicroscopy</i> , 2011 , 111, 285-9	3.1	39	
26	Direct Observation of Oxygen Vacancy Distribution across Yttria-Stabilized Zirconia Grain Boundaries. <i>ACS Nano</i> , 2017 , 11, 11376-11382	16.7	37	

266	Picometer-scale atom position analysis in annular bright-field STEM imaging. <i>Ultramicroscopy</i> , 2018 , 184, 177-187	3.1	37
265	Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: a theoretical study. <i>Ultramicroscopy</i> , 2011 , 111, 1144-54	3.1	37
264	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe) (CuIn Ga Se) Photocathodes Prepared by a Bilayer Method. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15329-15333	16.4	35
263	High Electron Mobility of Nb-Doped SrTiOlFilms Stemming from Rod-Type Sr Vacancy Clusters. <i>ACS Nano</i> , 2015 , 9, 10769-77	16.7	34
262	Atomic structure of luminescent centers in high-efficiency Ce-doped w-AlN single crystal. <i>Scientific Reports</i> , 2014 , 4, 3778	4.9	34
261	First-principles study of rare earth adsorption at Esi3N4 interfaces. <i>Physical Review B</i> , 2008 , 78,	3.3	34
2 60	Mechanical force involved multiple fields switching of both local ferroelectric and magnetic domain in a Bi5Ti3FeO15 thin film. <i>NPG Asia Materials</i> , 2017 , 9, e349-e349	10.3	33
259	Atomic-scale structure relaxation, chemistry and charge distribution of dislocation cores in SrTiO. <i>Ultramicroscopy</i> , 2018 , 184, 217-224	3.1	33
258	Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO N Particles. <i>Small</i> , 2016 , 12, 5468-5476	11	33
257	Cubic Cesium Hydrogen Silicododecatungstate with Anisotropic Morphology and Polyoxometalate Vacancies Exhibiting Selective Water Sorption and Cation-Exchange Properties. <i>Chemistry of Materials</i> , 2013 , 25, 905-911	9.6	33
256	Functional complex point-defect structure in a huge-size-mismatch system. <i>Physical Review Letters</i> , 2013 , 110, 065504	7.4	33
255	Growth of Ruddlesden-Popper type faults in Sr-excess SrTiO3 homoepitaxial thin films by pulsed laser deposition. <i>Applied Physics Letters</i> , 2011 , 99, 173109	3.4	33
254	Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector. <i>Microscopy (Oxford, England)</i> , 2018 , 67, 46-50	1.3	33
253	Enhanced light element imaging in atomic resolution scanning transmission electron microscopy. <i>Ultramicroscopy</i> , 2014 , 136, 31-41	3.1	32
252	Resolving 45-pm-separated Si-Si atomic columns with an aberration-corrected STEM. <i>Microscopy</i> (Oxford, England), 2015 , 64, 213-7	1.3	31
251	Influence of Dislocations in Transition Metal Oxides on Selected Physical and Chemical Properties. <i>Crystals</i> , 2018 , 8, 241	2.3	31
250	Direct Atomic-Resolution Observation of Two Phases in the Li1.2Mn0.567Ni0.166Co0.067O2 Cathode Material for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 6085-6089	3.6	30
249	Strontium vacancy clustering in Ti-excess SrTiO3 thin film. <i>Applied Physics Letters</i> , 2011 , 99, 033110	3.4	30

248	First-principles study of grain boundary sliding in Al2O3. Physical Review B, 2007, 75,	3.3	30
247	Oxygen diffusion blocking of single grain boundary in yttria-doped zirconia bicrystals. <i>Journal of Materials Science</i> , 2005 , 40, 3185-3190	4.3	30
246	Surface Modifications of (ZnSe)(CuGaSe) to Promote Photocatalytic Z-Scheme Overall Water Splitting. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10633-10641	16.4	29
245	Single atom visibility in STEM optical depth sectioning. <i>Applied Physics Letters</i> , 2016 , 109, 163102	3.4	29
244	Atomic resolution electron microscopy in a magnetic field free environment. <i>Nature Communications</i> , 2019 , 10, 2308	17.4	28
243	Grain boundary character dependence of oxygen grain boundary diffusion in ⊞Al2O3 bicrystals. <i>Scripta Materialia</i> , 2011 , 65, 544-547	5.6	27
242	Quantitative electric field mapping in thin specimens using a segmented detector: Revisiting the transfer function for differential phase contrast. <i>Ultramicroscopy</i> , 2017 , 182, 258-263	3.1	26
241	Atomic structure and strain field of threading dislocations in CeO2 thin films on yttria-stabilized ZrO2. <i>Applied Physics Letters</i> , 2011 , 98, 153104	3.4	26
240	Grain-boundary faceting at a = 3, [110]/{112} grain boundary in a cubic zirconia bicrystal. <i>Philosophical Magazine</i> , 2003 , 83, 2221-2246	1.6	26
239	Structure of [110] tilt grain boundaries in zirconia bicrystals. <i>Journal of Electron Microscopy</i> , 2001 , 50, 429-33		26
238	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19669-19674	16.4	24
237	Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries. <i>ACS Nano</i> , 2018 , 12, 2662-2668	16.7	24
236	Probing the Internal Atomic Charge Density Distributions in Real Space. ACS Nano, 2018, 12, 8875-8881	16.7	24
235	Dynamic observations of dislocation behavior in SrTiO3 by in situ nanoindentation in a transmission electron microscope. <i>Applied Physics Letters</i> , 2012 , 100, 181906	3.4	24
234	Theoretical framework of statistical noise in scanning transmission electron microscopy. <i>Ultramicroscopy</i> , 2018 , 193, 118-125	3.1	24
233	Solar-Driven Water Splitting over a BaTaO2N Photoanode Enhanced by Annealing in Argon. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5777-5784	6.1	23
232	Direct imaging of atomistic grain boundary migration. <i>Nature Materials</i> , 2021 , 20, 951-955	27	23
231	Highly Active GaN-Stabilized Ta3N5 Thin-Film Photoanode for Solar Water Oxidation. <i>Angewandte Chemie</i> , 2017 , 129, 4817-4821	3.6	22

230	A Novel Class of Multiferroic Material, Bi4Ti3O12hBiFeO3 with Localized Magnetic Ordering Evaluated from Their Single Crystals. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600254	6.4	22
229	Electron microscopic observation of selective excitation of conformational change of a single organic molecule. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3474-7	16.4	22
228	Stable Magnetic Skyrmion States at Room Temperature Confined to Corrals of Artificial Surface Pits Fabricated by a Focused Electron Beam. <i>Nano Letters</i> , 2018 , 18, 754-762	11.5	22
227	Towards zero bias photoelectrochemical water splitting: onset potential improvement on a Mg:GaN modified-Ta3N5 photoanode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15265-15273	13	22
226	Interfacial structure in silicon nitride sintered with lanthanide oxide. <i>Journal of Materials Science</i> , 2006 , 41, 4405-4412	4.3	22
225	A particulate (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathode modified with CdS and ZnS for sunlight-driven overall water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21242-21248	13	21
224	A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging. <i>Ultramicroscopy</i> , 2017 , 173, 76-83	3.1	21
223	Optically produced cross patterning based on local dislocations inside MgO single crystals. <i>Applied Physics Letters</i> , 2007 , 90, 163110	3.4	21
222	Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting. <i>Chemical Science</i> , 2016 , 7, 5821-5826	9.4	21
221	Atomic structure of a B [110]/(111) grain boundary in CeO2. Applied Physics Letters, 2012, 100, 073109	3.4	20
220	Cation off-stoichiometric SrMnO3Ithin film grown by pulsed laser deposition. <i>Journal of Materials Science</i> , 2011 , 46, 4354-4360	4.3	20
219	Partial dislocation configurations in a low-angle boundary in 🖽 l2O3. Acta Materialia, 2008, 56, 2015-202	28.4	20
218	Dislocation structures of low-angle boundaries in Nb-doped SrTiO3 bicrystals. <i>Journal of Materials Science</i> , 2006 , 41, 2621-2625	4.3	20
217	Direct visualization of lithium via annular bright field scanning transmission electron microscopy: a review. <i>Microscopy (Oxford, England)</i> , 2017 , 66, 3-14	1.3	20
216	Atomic-Scale Tracking of a Phase Transition from Spinel to Rocksalt in Lithium Manganese Oxide. <i>Chemistry of Materials</i> , 2017 , 29, 1006-1013	9.6	19
215	The effects of annealing barium niobium oxynitride in argon on photoelectrochemical water oxidation activity. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 493-502	13	19
214	Atomic-scale segregation behavior of Pr at a ZnO [0001] 49 tilt grain boundary. <i>Physical Review B</i> , 2009 , 80,	3.3	19
213	First Principles Calculations of Vacancy Formation Energies in Σ13 Pyramidal Twin Grain Boundary of α-Al2O3. <i>Materials Transactions</i> , 2009 , 50, 1019-1022	1.3	19

(2017-2016)

212	Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy. <i>Scientific Reports</i> , 2016 , 6, 35880	4.9	19	
211	Direct observation of atomic-scale fracture path within ceramic grain boundary core. <i>Nature Communications</i> , 2019 , 10, 2112	17.4	18	
210	Titanium enrichment and strontium depletion near edge dislocation in strontium titanate [001]/(110) low-angle tilt grain boundary. <i>Journal of Materials Science</i> , 2014 , 49, 3962-3969	4.3	18	
209	A dislocation core in titanium dioxide and its electronic structure. <i>RSC Advances</i> , 2015 , 5, 18506-18510	3.7	18	
208	Simultaneous visualization of oxygen vacancies and the accompanying cation shifts in a perovskite oxide by combining annular imaging techniques. <i>Applied Physics Letters</i> , 2012 , 100, 193112	3.4	18	
207	Fabrication of electrically conductive nanowires using high-density dislocations in AlN thin films. <i>Journal of Applied Physics</i> , 2009 , 106, 124307	2.5	18	
206	Atomic structures of a liquid-phase bonded metal/nitride heterointerface. <i>Scientific Reports</i> , 2016 , 6, 22936	4.9	17	
205	Dislocation and oxygen-release driven delithiation in LiMnO. <i>Nature Communications</i> , 2020 , 11, 4452	17.4	17	
204	Simultaneously Tuning the Defects and Surface Properties of TaN Nanoparticles by Mg-Zr Codoping for Significantly Accelerated Photocatalytic H Evolution. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10059-10064	16.4	17	
203	Direct Observation of Impurity Segregation at Dislocation Cores in an Ionic Crystal. <i>Nano Letters</i> , 2017 , 17, 2908-2912	11.5	16	
202	Measuring nanometre-scale electric fields in scanning transmission electron microscopy using segmented detectors. <i>Ultramicroscopy</i> , 2017 , 182, 169-178	3.1	16	
201	True Vapor-Liquid-Solid Process Suppresses Unintentional Carrier Doping of Single Crystalline Metal Oxide Nanowires. <i>Nano Letters</i> , 2017 , 17, 4698-4705	11.5	16	
200	Direct Measurement of Electronic Band Structures at Oxide Grain Boundaries. <i>Nano Letters</i> , 2020 , 20, 2530-2536	11.5	15	
199	Sintering characteristics and thermoelectric properties of Mn–Al co-doped ZnO ceramics. Journal of the Ceramic Society of Japan, 2016 , 124, 515-522	1	15	
198	Dopant-segregation-controlled ZnO single-grain-boundary varistors. <i>Applied Physics Letters</i> , 2005 , 86, 152112	3.4	15	
197	Atomic Scale Origin of Enhanced Ionic Conductivity at Crystal Defects. <i>Nano Letters</i> , 2019 , 19, 2162-216	58 11.5	15	
196	Inversion domain boundaries in Mn and Al dual-doped ZnO: Atomic structure and electronic properties. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 4252-4262	3.8	14	
195	Enhancement of Charge Separation and Hydrogen Evolution on Particulate LaTiCuSO Photocathodes by Surface Modification. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 375-379	6.4	14	

194	Grain boundary Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal. <i>Applied Physics Letters</i> , 2020 , 116, 043901	3.4	14
193	Stable Hydrogen Production from Water on an NIR-Responsive Photocathode under Harsh Conditions. <i>Small Methods</i> , 2018 , 2, 1800018	12.8	14
192	Dislocation structures and strain fields in [111] low-angle tilt grain boundaries in zirconia bicrystals. Journal of Electron Microscopy, 2010 , 59 Suppl 1, S117-21		14
191	Thin-film stabilization of LiNbO3-type ZnSnO3 and MgSnO3 by molecular-beam epitaxy. <i>APL Materials</i> , 2019 , 7, 022505	5.7	13
190	High spatiotemporal-resolution imaging in the scanning transmission electron microscope. <i>Microscopy (Oxford, England)</i> , 2020 , 69, 240-247	1.3	13
189	Activation of a particulate Ta3N5 water-oxidation photoanode with a GaN hole-blocking layer. Sustainable Energy and Fuels, 2018 , 2, 73-78	5.8	13
188	Periodic nanowire array at the crystal interface. ACS Nano, 2013, 7, 6297-302	16.7	13
187	Structure and Configuration of Boundary Dislocations on Low Angle Tilt Grain Boundaries in Alumina. <i>Materials Transactions</i> , 2009 , 50, 1008-1014	1.3	13
186	Interface engineering of TaN thin film photoanode for highly efficient photoelectrochemical water splitting <i>Nature Communications</i> , 2022 , 13, 729	17.4	13
185	Interfacial Atomic Structure of Twisted Few-Layer Graphene. Scientific Reports, 2016, 6, 21273	4.9	13
184	Efficient photocatalytic hydrogen evolution on single-crystalline metal selenide particles with suitable cocatalysts. <i>Chemical Science</i> , 2020 , 11, 6436-6441	9.4	13
183	Three-Dimensional Imaging of a Single Dopant in a Crystal. <i>Physical Review Applied</i> , 2020 , 13,	4.3	12
182	Boundary-artifact-free determination of potential distribution from differential phase contrast signals. <i>Journal of Electron Microscopy</i> , 2017 , 66, 397-405		12
181	Mass transfer through a single grain boundary in alumina bicrystals under oxygen potential gradients. <i>Journal of Materials Science</i> , 2011 , 46, 4407-4412	4.3	12
180	High-resolution transmission electron microscopy (HRTEM) observation of dislocation structures in AlN thin films. <i>Journal of Materials Research</i> , 2008 , 23, 2188-2194	2.5	12
179	Relative Li-ion mobility mapping in Li0.33La0.56TiO3polycrystalline by electron backscatter diffraction and electrochemical strain microscopy. <i>Applied Physics Express</i> , 2017 , 10, 061102	2.4	11
178	Magnetic-structure imaging in polycrystalline materials by specimen-tilt series averaged DPC STEM. <i>Microscopy (Oxford, England)</i> , 2020 , 69, 312-320	1.3	11
177	Efficient Water Oxidation Using Ta N Thin Film Photoelectrodes Prepared on Insulating Transparent Substrates. <i>ChemSusChem</i> , 2020 , 13, 1974-1978	8.3	11

176	Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy. <i>Physical Review A</i> , 2018 , 97,	2.6	11
175	HAADF-STEM observations of a ¶3 grain boundary in ₱Al2O3 from two orthogonal directions. <i>Philosophical Magazine Letters</i> , 2010 , 90, 539-546	1	11
174	Surface Protective and Catalytic Layer Consisting of RuO and Pt for Stable Production of Methylcyclohexane Using Solar Energy. <i>ACS Applied Materials & District Materials</i> , 10, 44396-44402	9.5	11
173	Accurate measurement of electric potentials in biased GaAs compound semiconductors by phase-shifting electron holography. <i>Microscopy (Oxford, England)</i> , 2019 , 68, 159-166	1.3	10
172	Fast Li-ion conduction at grain boundaries in (La,Li)NbO3 polycrystals. <i>Journal of Power Sources</i> , 2019 , 441, 227187	8.9	10
171	Differential Phase Contrast Imaging with Reduced Dynamical Diffraction Effect. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1412-1413	0.5	10
170	Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO. <i>Scientific Reports</i> , 2014 , 4, 6725	4.9	10
169	Existence of basal oxygen vacancies on the rutile TiO2(110) surface. <i>Physical Review B</i> , 2014 , 90,	3.3	10
168	Core structure and dissociation energetics of basal edge dislocation in Al2O3: A combined atomistic simulation and transmission electron microscopy analysis. <i>Acta Materialia</i> , 2014 , 65, 76-84	8.4	10
167	Zr segregation and associated Al vacancies in alumina grain boundaries. <i>Journal of the Ceramic Society of Japan</i> , 2011 , 119, 840-844	1	10
166	High Resolution Microscopy Study for [001] Symmetric Tilt Boundary with a Tilt Angle of 66° in Rutile-type TiO2 Bicrystal. <i>Materials Transactions</i> , 2004 , 45, 2117-2121	1.3	10
165	A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. <i>Nature Communications</i> , 2021 , 12, 5980	17.4	10
164	Co thin films deposited directly on ZnO polar surfaces. Scientific Reports, 2016, 6, 38005	4.9	10
163	Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13837-13843	13	10
162	Large angle illumination enabling accurate structure reconstruction from thick samples in scanning transmission electron microscopy. <i>Ultramicroscopy</i> , 2019 , 197, 112-121	3.1	10
161	Unique fitting of electrochemical impedance spectra by random walk Metropolis Hastings algorithm. <i>Journal of Power Sources</i> , 2018 , 403, 184-191	8.9	10
160	Redox-Inactive CO Determines Atmospheric Stability of Electrical Properties of ZnO Nanowire Devices through a Room-Temperature Surface Reaction. <i>ACS Applied Materials & Devices</i> , 2019, 11, 40260-40266	9.5	9
159	Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties. <i>Scientific Reports</i> , 2015 , 5, 15011	4.9	9

158	Atomic structure of AlN/Al2O3 interfaces fabricated by pulsed-laser deposition. <i>Journal of Materials Science</i> , 2006 , 41, 2553-2557	4.3	9
157	Direct Evidence of Dopant-Enhanced Grain-Boundary Sliding in Yttria-Stabilized Zirconia Bicrystals. Journal of the American Ceramic Society, 2005 , 88, 938-942	3.8	9
156	Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes. <i>Ultramicroscopy</i> , 2016 , 169, 69-79	3.1	9
155	Dislocation Structures in Low-Angle Grain Boundaries of 🖽 12O3. <i>Crystals</i> , 2018 , 8, 133	2.3	9
154	Numerical Procedures to determine Potential Distribution from Electronic Field Vectors observed in Differential Phase Contrast (DPC) imaging. <i>Microscopy and Microanalysis</i> , 2017 , 23, 34-35	0.5	8
153	Quantitative electric field mapping of a p-n junction by DPC STEM. <i>Ultramicroscopy</i> , 2020 , 216, 113033	3.1	8
152	Self-activated Rh-Zr mixed oxide as a nonhazardous cocatalyst for photocatalytic hydrogen evolution. <i>Chemical Science</i> , 2020 , 11, 6862-6867	9.4	8
151	Direct-bonded aluminum on aluminum nitride substrates by transient liquid phase bonding. <i>Journal of the Ceramic Society of Japan</i> , 2017 , 125, 165-167	1	8
150	Dislocation structures in a {(bar{1})104}/<11(bar{2})0> low-angle tilt grain boundary of alumina (⊞Al2O3). <i>Journal of Materials Science</i> , 2011 , 46, 4428-4433	4.3	8
149	Cr diffusion in PAl2O3: Secondary ion mass spectroscopy and first-principles study. <i>Physical Review B</i> , 2010 , 82,	3.3	8
148	Electrical current flow at conductive nanowires formed in GaN thin films by a dislocation template technique. <i>Applied Physics Letters</i> , 2010 , 96, 193109	3.4	8
147	What atomic resolution annular dark field imaging can tell us about gold nanoparticles on TiO(2) (110). <i>Ultramicroscopy</i> , 2009 , 109, 1435-46	3.1	8
146	Toward quantitative electromagnetic field imaging by differential-phase-contrast scanning transmission electron microscopy. <i>Microscopy (Oxford, England)</i> , 2021 , 70, 148-160	1.3	8
145	Molten salt flux synthesis of La5Ti2CuS5O7 towards elongated single crystallites. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 055503	1.4	7
144	Sunlight-Driven Production of Methylcyclohexane from Water and Toluene Using ZnSe: Cu(In,Ga)Se2-Based Photocathode. <i>ChemCatChem</i> , 2019 , 11, 4266-4271	5.2	7
143	The core structure of 60º mixed basal dislocation in alumina (Al2O3) introduced by in situ TEM nanoindentation. <i>Scripta Materialia</i> , 2019 , 163, 157-162	5.6	7
142	Inversion domain network stabilization and spinel phase suppression in ZnO. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 2616-2626	3.8	7
141	Effects of an oxygen potential gradient and water vapor on mass transfer in polycrystalline alumina at high temperatures. <i>Acta Materialia</i> , 2018 , 151, 21-30	8.4	7

(2015-2016)

140	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 Photocathodes Prepared by a Bilayer Method. <i>Angewandte Chemie</i> , 2016 , 128, 15555-15559	3.6	7	
139	Misalignment Induced Artifacts in Quantitative Annular Bright-Field Imaging. <i>Microscopy and Microanalysis</i> , 2016 , 22, 888-889	0.5	7	
138	Atomic structure, energetics, and chemical bonding of Y doped 13 grain boundaries in #Al2O3. <i>Philosophical Magazine</i> , 2013 , 93, 1158-1171	1.6	7	
137	TEM observation of liquid-phase bonded aluminum Elilicon/aluminum nitride hetero interface. <i>Journal of Materials Science</i> , 2011 , 46, 4392-4396	4.3	7	
136	Structures of a	4.3	7	
135	Crack Propagation in a Ruby Single Crystal by Femtosecond Laser Irradiation. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 3118-3121	3.8	7	
134	Direct visualization of anionic electrons in an electride reveals inhomogeneities. <i>Science Advances</i> , 2021 , 7,	14.3	7	
133	Adsorption sites of single noble metal atoms on the rutile TiO2 (1 1 0) surface influenced by different surface oxygen vacancies. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 175002	1.8	7	
132	High contrast STEM imaging for light elements by an annular segmented detector. <i>Ultramicroscopy</i> , 2019 , 202, 148-155	3.1	6	
131	On the quantitativeness of grain boundary chemistry using STEM EDS: A ZrO D model grain boundary case study. <i>Ultramicroscopy</i> , 2018 , 193, 33-38	3.1	6	
130	Upscaling of Temperature-Sensitive Particle Photocatalyst Electrodes: Fully Ambient and Scalable Roll-Press Fabrication of Ta3N5 Photoelectrodes on Metal Substrate. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19407-19414	8.3	6	
129	HRTEM study of [001] low-angle tilt grain boundaries in fiber-textured BaTiO3 thin films. <i>Journal of Materials Science</i> , 2006 , 41, 5146-5150	4.3	6	
128	Suppressing dynamical diffraction artefacts in differential phase contrast scanning transmission electron microscopy of long-range electromagnetic fields via precession. <i>Ultramicroscopy</i> , 2020 , 219, 113097	3.1	6	
127	Synthesis of Y2Ti2O5S2 by thermal sulfidation for photocatalytic water oxidation and reduction under visible light irradiation. <i>Research on Chemical Intermediates</i> , 2021 , 47, 225-234	2.8	6	
126	Resolution Achievement of 40.5 pm in Scanning Transmission Electron Microscopy using 300 kV Microscope with Delta Corrector. <i>Microscopy and Microanalysis</i> , 2018 , 24, 120-121	0.5	6	
125	Atomic-resolution differential phase contrast electron microscopy. <i>Journal of the Ceramic Society of Japan</i> , 2019 , 127, 708-714	1	5	
124	Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor-Liquid-Solid Process. <i>Nano Letters</i> , 2019 , 19, 1675-1681	11.5	5	
123	Dissociation of the 1/3<11101> dislocation and formation of the anion stacking fault on the basal plane in EAl2O3. <i>Acta Materialia</i> , 2015 , 91, 152-161	8.4	5	

122	Room-temperature dilute ferromagnetic dislocations in Sr1MmxTiO3D <i>Physical Review B</i> , 2017 , 96,	3.3	5
121	Structure of (langle 110 rangle)-tilt boundaries in cubic zirconia. <i>Journal of Materials Science</i> , 2017 , 52, 4278-4287	4.3	5
120	Direct observation of the cleavage plane of sapphire by in-situ indentation TEM. <i>Journal of the Ceramic Society of Japan</i> , 2012 , 120, 473-477	1	5
119	Real-space visualization of intrinsic magnetic fields of an antiferromagnet <i>Nature</i> , 2022 , 602, 234-239	50.4	5
118	Atomic and electronic band structures of Ti-doped Al2O3 grain boundaries. <i>Acta Materialia</i> , 2020 , 201, 488-493	8.4	5
117	Synthesis of a Ga-doped La5Ti2Cu0.9Ag0.1O7S5 photocatalyst by thermal sulfidation for hydrogen evolution under visible light. <i>Journal of Catalysis</i> , 2021 , 399, 230-236	7-3	5
116	Machine learning in scanning transmission electron microscopy. <i>Nature Reviews Methods Primers</i> , 2022 , 2,		5
115	Plasma-enhanced chemical vapor deposition Ta3N5 synthesis leading to high current density during PEC oxygen evolution. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2293-2300	5.8	4
114	Dissociation reaction of the 1/3(leftlangle {bar{1}101} rightrangle) edge dislocation in \(\text{PAl2O3}.\) Journal of Materials Science, \(\text{2018}, 53, 8049-8058 \)	4.3	4
113	Oxygen segregation at coherent grain boundaries of cubic boron nitride. <i>Applied Physics Letters</i> , 2013 , 102, 091607	3.4	4
112	Prospects for 3D imaging of dopant atoms in ceramic interfaces. <i>Journal of Electron Microscopy</i> , 2010 , 59 Suppl 1, S29-38		4
111	Transmission electron microscopy and scanning transmission electron microscopy study on B-site cation ordered structures in a (1☑)Pb(Mg1/3Nb2/3)O3☑PbTiO3 single crystal. <i>Applied Physics Letters</i> , 2009 , 95, 022906	3.4	4
110	Experimental Observation of Long-Range Magnetic Order in Icosahedral Quasicrystals. <i>Journal of the American Chemical Society</i> , 2021 , 143, 19938-19944	16.4	4
109	Oxygen-Induced Reversible Sn-Dopant Deactivation between Indium Tin Oxide and Single-Crystalline Oxide Nanowire Leading to Interfacial Switching. <i>ACS Applied Materials & Materials & Interfaces</i> , 2020 , 12, 52929-52936	9.5	4
108	Rational Low-Temperature Synthesis of Ultrasmall Nanocrystalline Manganese Binary Oxide Catalysts under Controlled Metal Cation Hydration in Organic Media. <i>ChemNanoMat</i> , 2016 , 2, 297-306	3.5	4
107	Microstructural analysis and thermoelectric properties of Sn-Al co-doped ZnO ceramics 2016 ,		4
106	Transition-Metal Distribution in Brownmillerite CaFeCoO. <i>Inorganic Chemistry</i> , 2019 , 58, 10209-10216	5.1	3
105	First Principles Calculation of ELNES/XANES for Materials Science. <i>Materia Japan</i> , 2014 , 53, 414-418	0.1	3

(2020-2017)

104	Another origin of yield drop behavior in sapphire deformed via basal slip: Recombination of climb-dissociated partial dislocations. <i>Scripta Materialia</i> , 2017 , 138, 109-113	5.6	3
103	First principles study of oxygen diffusion in a 🖶 lumina twin grain boundary. <i>Philosophical Magazine</i> , 2015 , 95, 3985-3999	1.6	3
102	Resolving 45 pm with 300 kV Aberration Corrected STEM. <i>Microscopy and Microanalysis</i> , 2014 , 20, 124-1	1 25 .5	3
101	Effects of TiO2Support on the Initial Stage of Pt Nanoparticle Growth. <i>Applied Physics Express</i> , 2013 , 6, 025503	2.4	3
100	First-principles sliding simulation of Al-terminated 🛭 3 pyramidal twin grain boundary in 🖽 l2O3. <i>Philosophical Magazine Letters</i> , 2010 , 90, 159-172	1	3
99	First-principles calculations of group IIA and group IV impurities in Al2O3. <i>Physical Review Materials</i> , 2020 , 4,	3.2	3
98	Ultra-high contrast STEM imaging for segmented/pixelated detectors by maximizing the signal-to-noise ratio. <i>Ultramicroscopy</i> , 2021 , 220, 113133	3.1	3
97	Enhanced Overall Water Splitting by a Zirconium-Doped TaON-Based Photocatalyst <i>Angewandte Chemie - International Edition</i> , 2022 , e202116573	16.4	3
96	Imaging Low Z Materials in Crystalline Environments Via Scanning Transmission Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1732-1733	0.5	2
95	One-dimensional Anisotropic Electronic States in Needle-shaped La5Ti2CuS5O7 Single Crystals Grown in Molten Salt in Bridgman Furnace. <i>Crystal Growth and Design</i> , 2019 , 19, 2419-2427	3.5	2
94	New STEM/TEM Objective Lens for Atomic Resolution Lorentz Imaging. <i>Microscopy and Microanalysis</i> , 2017 , 23, 456-457	0.5	2
93	In situ STEM Mechanical Experiments at Atomic-Resolution Using a MEMS Device. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1884-1885	0.5	2
92	Innentitelbild: A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm (Angew. Chem. 10/2015). <i>Angewandte Chemie</i> , 2015 , 127, 2900-2900	3.6	2
91	Early detection of innovations from citation networks 2009 ,		2
90	Cross patterning on MgO based on dislocations using femtosecond laser irradiation. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 92, 913-916	2.6	2
89	Atomic Structure and Relaxation Behavior at AlN(0001)/Al2O3(0001)Interface. <i>Journal of the Ceramic Society of Japan</i> , 2006 , 114, 1018-1021		2
88	Development of Tilt-Scan System for Differential Phase Contrast Scanning Transmission Electron Microscopy <i>Microscopy (Oxford, England)</i> , 2022 ,	1.3	2
87	Stabilization of a honeycomb lattice of IrO6 octahedra by formation of ilmenite-type superlattices in MnTiO3. <i>Communications Materials</i> , 2020 , 1,	6	2

86	Atomic structures of Ti-doped Al2O3 3 grain boundary with a small amount of Si impurity. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 6659-6665	3.8	2
85	Automated geometric aberration correction for large-angle illumination STEM. <i>Ultramicroscopy</i> , 2021 , 222, 113215	3.1	2
84	Atomic-Resolution Scanning Transmission Electron Microscopy with Segmented Annular All Field Detector. <i>Microscopy and Microanalysis</i> , 2014 , 20, 64-65	0.5	1
83	Three-Dimensional Point Defect Imaging by Large-angle Illumination STEM. <i>Microscopy and Microanalysis</i> , 2017 , 23, 424-425	0.5	1
82	Quantitative Specimen Electric Potential Maps Using Segmented and Pixel Detectors in Scanning Transmission Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2017 , 23, 442-443	0.5	1
81	Aberration Correction System Using Segmented Detector in STEM. <i>Microscopy and Microanalysis</i> , 2015 , 21, 341-342	0.5	1
80	Observations of crack propagation along a Zr-doped alumina grain boundary. <i>Microscopy (Oxford, England)</i> , 2014 , 63 Suppl 1, i20-i21	1.3	1
79	TEM analysis of dislocation structures formed in the Cr-doped grain boundary of alumina. <i>Journal of the Ceramic Society of Japan</i> , 2011 , 119, 817-821	1	1
78	Morphology change from nanocrack into periodic pore array formed by femtosecond laser pulses. Journal of Applied Physics, 2011 , 109, 013517	2.5	1
77	Formation of a Cr3+-rich luminescent thin phase along a grain boundary of .ALPHAAl2O3. <i>Journal of the Ceramic Society of Japan</i> , 2011 , 119, 620-622	1	1
76	Cocatalyst engineering of a narrow bandgap Ga-La5Ti2Cu0.9Ag0.1O7S5 photocatalyst towards effectively enhanced water splitting. <i>Journal of Materials Chemistry A</i> ,	13	1
75	Improving the depth resolution of STEM-ADF sectioning by 3D deconvolution. <i>Microscopy (Oxford, England)</i> , 2021 , 70, 241-249	1.3	1
74	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. <i>Angewandte Chemie</i> , 2020 , 132, 19837-19842	3.6	1
73	Atomic-Resolution Topographic Imaging of Crystal Surfaces. ACS Nano, 2021, 15, 9186-9193	16.7	1
72	Quantitative Atomic Resolution Differential Phase Contrast Imaging Using a Segmented Area All Field Detector. <i>Microscopy and Microanalysis</i> , 2016 , 22, 504-505	0.5	1
71	Coexistence of two different atomic structures in the 🛭 3 pyramidal twin boundary in 🗛 l2O3. <i>Philosophical Magazine Letters</i> , 2019 , 99, 435-443	1	1
7°	Quantitative electric field mapping in semiconductor heterostructures via tilt-scan averaged DPC STEM <i>Ultramicroscopy</i> , 2022 , 238, 113538	3.1	1
69	Phase-Contrast-Based Structure Retrieval Methods in Atomic Resolution Scanning Transmission Electron Microscopy (When They Hold and When They Don M. <i>Microscopy and Microanalysis</i> , 2020 , 26, 442-443	0.5	O

68	Thickness-dependent frictional behavior of topological insulator Bi2Se3 nanoplates. <i>Applied Physics A: Materials Science and Processing</i> , 2020 , 126, 1	2.6	О
67	First-principles sliding simulation of Al-terminated 🛭 3 pyramidal twin grain boundary in 🗛 l2O3 [Philosophical Magazine Letters , Volume 90, Issue 3, pp. 159🖟 72 (2010)]. <i>Philosophical Magazine</i> Letters, 2011 , 91, 561-562	1	Ο
66	Factors limiting quantitative phase retrieval in atomic-resolution differential phase contrast scanning transmission electron microscopy using a segmented detector <i>Ultramicroscopy</i> , 2021 , 233, 113457	3.1	О
65	Fabrication and characterization of tetragonal yttria-stabilized zirconia single-crystalline thin film. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 1198-1203	3.8	0
64	Nanometre imaging of FeGeTe ferromagnetic domain walls. <i>Nanotechnology</i> , 2021 , 32, 205703	3.4	0
63	Atomistic Origin of Li-lon Conductivity Reduction at (LiLa)TiO Grain Boundary. <i>Nano Letters</i> , 2021 , 21, 6282-6288	11.5	O
62	Direct visualization of nucleation intermediate state of magnetic skyrmion from helical stripes assisted by artificial surface pits. <i>Journal of Magnetism and Magnetic Materials</i> , 2021 , 531, 167976	2.8	0
61	Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary <i>Nature Communications</i> , 2022 , 13, 1455	17.4	О
60	Atomic and electronic band structures of Y-doped Al₂0₃ grain boundaries. <i>Journal of the Ceramic Society of Japan</i> , 2022 , 130, 286-289	1	0
59	Advanced Scanning Transmission Electron Microscopy as a Tool for Direct Real-Space Visualization and Artificial Control of Quantum Spin Textures. <i>Microscopy and Microanalysis</i> , 2019 , 25, 954-955	0.5	
58	Light Element Imaging Technique at Low Dose Condition by Processing Simultaneously Obtained STEM Images Using a Segmented Detector. <i>Microscopy and Microanalysis</i> , 2019 , 25, 484-485	0.5	
57	ABF-STEM Characterization of the {1100} Stacking Fault in Alumina. <i>Materia Japan</i> , 2016 , 55, 610-610	0.1	
56	Analysis of GaAs compound semiconductors and the semiconductor laser diode using electron holography, Lorentz microscopy, electron diffraction microscopy and differential phase contrast STEM 2016 , 719-720		
55	Atomic-Scale Structural Analysis of Metal/Nitride Interfaces Using Advanced Atomic-Resolution Analytical Electron Microscopy. <i>Nihon Kessho Gakkaishi</i> , 2017 , 59, 246-251	O	
54	Direct Visualization of the Grain Boundary Solute Segregation in Oxide Material at Atomic Resolution Using STEM-EDS. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1340-1341	0.5	
53	Water Splitting: Stable Hydrogen Production from Water on an NIR-Responsive Photocathode under Harsh Conditions (Small Methods 5/2018). <i>Small Methods</i> , 2018 , 2, 1800029	12.8	
52	Surface and Electric Field Imaging by Newly Designed Atomic-Resolution STEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 118-119	0.5	
51	Iterative Algorithm of Atomic Potential Reconstruction Based on DPC Signal from Thick Specimens. <i>Microscopy and Microanalysis</i> , 2019 , 25, 60-61	0.5	

50	Differential Phase Contrast Scanning Transmission Electron Microscopy at Atomic Resolution. <i>Microscopy and Microanalysis</i> , 2019 , 25, 14-15	0.5
49	Polar Oxide Interface Characterization by Differential Phase Contrast STEM. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1034-1035	0.5
48	Better Contrast for Imaging Defects by ABF. <i>Microscopy and Microanalysis</i> , 2017 , 23, 480-481	0.5
47	Quantitative Relation Between Differential Phase Contrast Images Obtained by Segmented and Pixelated Detectors. <i>Microscopy and Microanalysis</i> , 2017 , 23, 440-441	0.5
46	Atomic-resolution STEM-EDS mapping of grain boundary solute segregation in yttria-stabilized zirconia. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2283-2284	0.5
45	Atomic Observation of Phase Transformation from Spinel to Rock Salt in Lithium Manganese Oxide. <i>Microscopy and Microanalysis</i> , 2015 , 21, 333-334	0.5
44	B11-O-04Atomic-resolution STEM-EDS investigation of grain boundary solute segregation behavior in yttria-stabilized zirconia. <i>Microscopy (Oxford, England)</i> , 2015 , 64, i12.1-i12	1.3
43	What Does Quantitative Mean In Atomic-Resolution EDS STEM?. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1075-1076	0.5
42	Advanced Electron Microscopy for Energy Related Materials. <i>Microscopy and Microanalysis</i> , 2015 , 21, 471-472	0.5
41	Annular Bright-Field Electron Microscopy Tracking Solid-State Chemical Reaction. <i>Microscopy and Microanalysis</i> , 2015 , 21, 963-964	0.5
40	Analysis of GaAs Compound Semiconductors and the Semiconductor Laser Diode using Off-Axis Electron Holography, Lorentz Microscopy, Electron Diffraction Microscopy and Differential Phase Contrast STEM. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1975-1976	0.5
39	B11-O-11Atomic-scale Tracking Cation Diffusion in Lithium Manganese Oxide. <i>Microscopy (Oxford, England)</i> , 2015 , 64, i15.2-i15	1.3
38	B22-O-11 Atomic scale STEM analysis of structure and dopant effects on Halumina grain boundary. <i>Microscopy (Oxford, England)</i> , 2015 , 64, i52.1-i52	1.3
37	Application to Ceramic Interfaces 2011 , 467-521	
36	Dislocation Arrays in Sapphire using Femtosecond Laser Irradiation. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1228, 55601	
35	Defect doping and characterization in oxide single crystals using femtosecond laser. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1298, 185	
34	Direct Imaging of Dopant Segregation in a Ceramic Grain Boundary. <i>Materia Japan</i> , 2009 , 48, 639-639	0.1
33	Direct Observation of TiO2 (110) Surfaces by HVEM and HAADF STEM. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1194-1195	0.5

32	Atomic Structures and Properties of Ceramic Interfaces Combination of Cs-Corrected STEM and First Principles Calculations. <i>Microscopy and Microanalysis</i> , 2010 , 16, 1466-1467	0.5
31	Atomic-Scale Processes of Grain-Boundary Faceting in a Zirconia Bicrystal. <i>Materials Science Forum</i> , 2007 , 558-559, 955-958	0.4
30	Dislocation Structure Analysis of Low Angle Tilt Grain Boundaries in Alumina by Elastic Theory. <i>Materials Science Forum</i> , 2007 , 561-565, 2465-2468	0.4
29	TEM Characterization of Lattice Defects Associated with Deformation and Fracture in 🖽 l2O3 2022 , 133-156	
28	Facetted Structure at a Σ3 Zirconia Grain Boundary. <i>Materia Japan</i> , 2005 , 44, 963-963	0.1
27	Atomic Structure of AlN/α-Al2O3 Interface Fabricated by Pulsed Laser Deposition. <i>Materia Japan</i> , 2005 , 44, 964-964	0.1
26	Direct Observation of Y Segregation Sites at Alumina Grain Boundary. <i>Materia Japan</i> , 2006 , 45, 852-852	0.1
25	Structure Units of Σ9 Zirconia Grain Boundary. <i>Materia Japan</i> , 2006 , 45, 842-842	0.1
24	Electron microscope control and image analysis by DigitalMicrograph. <i>Materia Japan</i> , 2018 , 57, 584-588	0.1
23	Electric Field Imaging at Atomic Resolution by DPC STEM. <i>Materia Japan</i> , 2019 , 58, 104-104	0.1
22	Direct Imaging of Local Electromagnetic Fields by DPC STEM. <i>Materia Japan</i> , 2019 , 58, 433-439	0.1
21	Advanced Characterization Nanotechnology Platform, the University of Tokyo. <i>Materia Japan</i> , 2019 , 58, 727-732	0.1
20	Direct Electric Field Imaging of Atomistic Graphene Defects. Nihon Kessho Gakkaishi, 2019 , 61, 231-236	0
19	Reprint of: Automated geometric aberration correction for large-angle illumination STEM. <i>Ultramicroscopy</i> , 2021 , 231, 113410	3.1
18	OS1414-276 Dynamic observations of Mechanical twinning in 🗟 lumina by in-situ TEM nanoindentation. <i>The Proceedings of the Materials and Mechanics Conference</i> , 2015 , 2015, _OS1414-27	ÓS1414-27
17	OS1402-347 Electric conduction at charged domain walls in Lithium Niobate. <i>The Proceedings of the Materials and Mechanics Conference</i> , 2015 , 2015, _OS1402-34OS1402-34	o
16	Atomic-Resolution STEM-EDS Mapping of Grain Boundary Solute Segregation in Yttria-Stabilized Zirconia. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2281-2282	0.5
15	Strain Field Analysis of High Electron Mobility-inducing Sr Vacancy Clusters in SrTiO3 Films. <i>Materia Japan</i> , 2016 , 55, 613-613	0.1

14	Atom-resolved STEM-EDS Mapping of a Liquid-phase Bonded Metal/Nitride Heterointerface. <i>Materia Japan</i> , 2016 , 55, 611-611	0.1
13	Complex Point Defect Structure in Cubic Boron Nitride. <i>Materia Japan</i> , 2016 , 55, 609-609	0.1
12	Direct Imaging of Single Dopant Atoms in a Buried Crystalline Interface by Scanning Transmission Electron Microscopy. <i>Journal of the Vacuum Society of Japan</i> , 2011 , 54, 270-274	
11	F221002 Dynamic Observations of plastic Deformation in Ceramic Materials by in-situ TEM mechanical test. <i>The Proceedings of Mechanical Engineering Congress Japan</i> , 2014 , 2014, _F221002-1F.	221002-2
10	Atom-Resolved STEM Imaging Using a Segmented Detector 2016 , 511-512	
9	Direct Electromagnetic Structure Observation by Aberration-corrected Differential Phase Contrast Scanning Transmission Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2016 , 22, 906-907	0.5
8	Direct Visualization of Magnetic Skyrmion by Aberration-Corrected Differential Phase Contrast Scanning Transmission Electron Microscopy 2016 , 689-690	
7	Annular Bright Field STEM Investigation of the (0001) Stacking Fault in Alumina. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1592-1593	0.5
6	Atomic-Resolution Composition Mapping in EDS STEM. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1432-14	-3 3 .5
5	PM-03 New Magnetic Structure Imaging Techniques in Polycrystalline Materials by DPC STEM. <i>Microscopy (Oxford, England)</i> , 2019 , 68, i36-i36	1.3
4	Probe Shaping for Quantitative DPC-STEM Using Segmented Detectors. <i>Microscopy and Microanalysis</i> , 2018 , 24, 916-917	0.5
3	Development of High-Speed Scan System for Atomic Resolution STEM. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2710-2712	0.5
2	Direct atomistic defect observations by depth sectioning and dynamic STEM. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2138-2139	0.5
1	The Observation of Local Electric Fields in GaN/AlGaN/InGaN Multi-heterostructures by Differential Phase Contrast STEM. <i>IEEJ Transactions on Electronics, Information and Systems</i> , 2022 , 142, 367-372	0.1