
Sunil K Lal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8879670/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Suppressor of Cytokine Signalling family of proteins and their potential impact on COVIDâ€19 disease progression. Reviews in Medical Virology, 2022, 32, e2300.	3.9	11
2	Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166294.	1.8	28
3	Heterogeneous Ribonucleoprotein A1 (hnRNPA1) Interacts with the Nucleoprotein of the Influenza a Virus and Impedes Virus Replication. Viruses, 2022, 14, 199.	1.5	4
4	Heat Shock Proteins and Their Interplay to Control Influenza A Virus Replication. International Journal of Infectious Diseases, 2022, 116, S93.	1.5	1
5	Repositioning anticancer drugs as novel COVID-19 antivirals: targeting structural and functional similarities between viral proteins and cancer. Expert Reviews in Molecular Medicine, 2022, 24, 1-23.	1.6	2
6	Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity. Viruses, 2022, 14, 1345.	1.5	19
7	The Immunomodulatory CEA Cell Adhesion Molecule 6 (CEACAM6/CD66c) Is a Protein Receptor for the Influenza A Virus. Viruses, 2021, 13, 726.	1.5	10
8	Comparative Transcriptomic and Molecular Pathway Analyses of HL-CZ Human Pro-Monocytic Cells Expressing SARS-CoV-2 Spike S1, S2, NP, NSP15 and NSP16 Genes. Microorganisms, 2021, 9, 1193.	1.6	9
9	SARS coronavirus outbreaks past and present—a comparative analysis of SARS-CoV-2 and its predecessors. Virus Genes, 2021, 57, 307-317.	0.7	14
10	Current vaccine approaches and emerging strategies against herpes simplex virus (HSV). Expert Review of Vaccines, 2021, 20, 1077-1096.	2.0	8
11	COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses, 2021, 13, 202.	1.5	332
12	Editorial: Coronavirus Evolution, Cross-Species Transmission and Recombination. Frontiers in Microbiology, 2021, 12, 819417.	1.5	0
13	Influenza A Virus Nucleoprotein Activates the JNK Stress-Signaling Pathway for Viral Replication by Sequestering Host Filamin A Protein. Frontiers in Microbiology, 2020, 11, 581867.	1.5	8
14	Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses, 2020, 12, 1058.	1.5	81
15	Influenza A Virus: Host–Virus Relationships. Viruses, 2020, 12, 870.	1.5	1
16	AML1 protein interacts with influenza A virus neuraminidase and upregulates IFNâ€Î² response in infected mammalian cells. Letters in Applied Microbiology, 2020, 70, 252-258.	1.0	1
17	Influenza virus NS1- C/EBPβ gene regulatory complex inhibits RIG-I transcription. Antiviral Research, 2020, 176, 104747.	1.9	7
18	The multifarious roles of heterogeneous ribonucleoprotein A1 in viral infections. Reviews in Medical Virology, 2020, 30, e2097.	3.9	12

#	Article	IF	CITATIONS
19	The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses, 2020, 12, 436.	1.5	24
20	Upregulation of miR-101 during Influenza A Virus Infection Abrogates Viral Life Cycle by Targeting mTOR Pathway. Viruses, 2020, 12, 444.	1.5	11
21	Is tetherin a true antiviral: The influenza a virus controversy. Reviews in Medical Virology, 2019, 29, e2036.	3.9	7
22	Influenza A virus neuraminidase protein interacts with Hsp90, to stabilize itself and enhance cell survival. Journal of Cellular Biochemistry, 2019, 120, 6449-6458.	1.2	18
23	s8ORF2 protein of infectious salmon anaemia virus is a RNA-silencing suppressor and interacts with Salmon salar Mov10 (SsMov10) of the host RNAi machinery. Virus Genes, 2018, 54, 199-214.	0.7	7
24	Host Lipid Rafts Play a Major Role in Binding and Endocytosis of Influenza A Virus. Viruses, 2018, 10, 650.	1.5	47
25	The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Frontiers in Microbiology, 2018, 9, 1835.	1.5	681
26	Estimates of heterosis for yield and its contributing traits in cucumber. Indian Journal of Horticulture, 2018, 75, 332.	0.1	0
27	The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation. Archives of Virology, 2017, 162, 919-929.	0.9	19
28	Zika Virus: Transmission, Detection, Control, and Prevention. Frontiers in Microbiology, 2017, 8, 110.	1.5	71
29	Combining ability for yield and yield related traits and its relationship with gene action in cucumber. Indian Journal of Horticulture, 2017, 74, 51.	0.1	4
30	Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins. Scientific Reports, 2016, 6, 19063.	1.6	48
31	Interplay between influenza A virus and host factors: targets for antiviral intervention. Archives of Virology, 2015, 160, 1877-1891.	0.9	21
32	H7N9: A killer in the making or a false alarm?. Canadian Journal of Microbiology, 2014, 60, 425-429.	0.8	4
33	Influenza A viral nucleoprotein interacts with cytoskeleton scaffolding protein αâ€actininâ€4 for viral replication. FEBS Journal, 2014, 281, 2899-2914.	2.2	38
34	Expression of Avian Influenza Virus (H5N1) Hemagglutinin and Matrix Protein 1 in Pichia pastoris and Evaluation of their Immunogenicity in Mice. Applied Biochemistry and Biotechnology, 2014, 172, 3635-3645.	1.4	6
35	LIMD1 antagonizes E2F1 activity and cell cycle progression by enhancing Rb function in cancer cells. Cell Biology International, 2014, 38, 809-817.	1.4	11
36	Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris. Journal of Biosciences, 2014, 39, 443-451.	0.5	9

#	Article	IF	CITATIONS
37	A novel method to produce Influenza A virus matrix protein M1 Capsid Like Particles (CLPs). Journal of Virological Methods, 2014, 205, 1-2.	1.0	2
38	Identification of a new strain of Tobacco mosaic virus infecting soybean in India based on host reactions and 3′ end genome sequence. Crop Protection, 2013, 53, 20-22.	1.0	3
39	Recombinant haemagglutinin protein of highly pathogenic avian influenza A (H5N1) virus expressed in Pichia pastoris elicits a neutralizing antibody response in mice. Journal of Virological Methods, 2013, 187, 20-25.	1.0	12
40	Influenza A Virus Neuraminidase Protein Enhances Cell Survival through Interaction with Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) Protein. Journal of Biological Chemistry, 2012, 287, 15109-15117.	1.6	29
41	SARS Coronavirus 3b Accessory Protein Modulates Transcriptional Activity of RUNX1b. PLoS ONE, 2012, 7, e29542.	1.1	21
42	The ORF2 glycoprotein of hepatitis E virus inhibits cellular NF-κB activity by blocking ubiquitination mediated proteasomal degradation of IκBα in human hepatoma cells. BMC Biochemistry, 2012, 13, 7.	4.4	47
43	Inhibition of N-Terminal Lysines Acetylation and Transcription Factor Assembly by Epirubicin Induced Deranged Cell Homeostasis. PLoS ONE, 2012, 7, e51850.	1.1	9
44	SARS-CoV Accessory Protein 3b Induces AP-1 Transcriptional Activity through Activation of JNK and ERK Pathways. Biochemistry, 2011, 50, 5419-5425.	1.2	41
45	SARS-CoV 9b Protein Diffuses into Nucleus, Undergoes Active Crm1 Mediated Nucleocytoplasmic Export and Triggers Apoptosis When Retained in the Nucleus. PLoS ONE, 2011, 6, e19436.	1.1	37
46	Influenza A Virus Nucleoprotein Exploits Hsp40 to Inhibit PKR Activation. PLoS ONE, 2011, 6, e20215.	1.1	64
47	Influenza virus and cell signaling pathways. Medical Science Monitor, 2011, 17, RA148-RA154.	0.5	85
48	A new panel of NS1 antibodies for easy detection and titration of influenza A virus. Journal of Medical Virology, 2010, 82, 467-475.	2.5	15
49	The 7a Accessory Protein of Severe Acute Respiratory Syndrome Coronavirus Acts as an RNA Silencing Suppressor. Journal of Virology, 2010, 84, 10395-10401.	1.5	37
50	An Antibody against a Novel and Conserved Epitope in the Hemagglutinin 1 Subunit Neutralizes Numerous H5N1 Influenza Viruses. Journal of Virology, 2010, 84, 8275-8286.	1.5	64
51	Effect of mitoxantrone on proliferation dynamics and cell-cycle progression. Bioscience Reports, 2010, 30, 375-381.	1.1	18
52	ORF3 protein of hepatitis E virus interacts with the Bβ chain of fibrinogen resulting in decreased fibrinogen secretion from HuH-7 cells. Journal of General Virology, 2009, 90, 1359-1370.	1.3	29
53	A new influenza reassortant — a beast in the making. Indian Journal of Microbiology, 2009, 49, 299-300.	1.5	0
54	Molecular events leading to the creation of a pandemic influenza virus. Indian Journal of Microbiology, 2009, 49, 332-338.	1.5	3

#	Article	IF	CITATIONS
55	Efficacy of neuraminidase (NA) inhibitors against H1N1 strains of different geographical regions: an in silico approach. Indian Journal of Microbiology, 2009, 49, 370-376.	1.5	5
56	Adaptation of human influenza H3N2 virus in a mouse pneumonitis model: insights into viral virulence, tissue tropism and host pathogenesis. Microbes and Infection, 2009, 11, 2-11.	1.0	70
57	Functional genomics as a tool in virus research. Indian Journal of Microbiology, 2008, 48, 195-201.	1.5	1
58	Comparing the antibody responses against recombinant hemagglutinin proteins of avian influenza A (H5N1) virus expressed in insect cells and bacteria. Journal of Medical Virology, 2008, 80, 1972-1983.	2.5	35
59	The SARS-CoV nucleocapsid protein: A protein with multifarious activities. Infection, Genetics and Evolution, 2008, 8, 397-405.	1.0	140
60	Glycogen Synthase Kinase - 3 Phosphorylates and Regulates the Stability of p27kip1 Protein. Cell Cycle, 2007, 6, 580-588.	1.3	30
61	Cytoplasmic Localization of the ORF2 Protein of Hepatitis E Virus Is Dependent on Its Ability To Undergo Retrotranslocation from the Endoplasmic Reticulum. Journal of Virology, 2007, 81, 3339-3345.	1.5	82
62	The Molecular Biology of SARS Coronavirus. Annals of the New York Academy of Sciences, 2007, 1102, 26-38.	1.8	102
63	Enhanced α1 Microglobulin Secretion from Hepatitis E Virus ORF3-expressing Human Hepatoma Cells Is Mediated by the Tumor Susceptibility Gene 101. Journal of Biological Chemistry, 2006, 281, 8135-8142.	1.6	54
64	The VP1 protein of human enterovirus 71 self-associates via an interaction domain spanning amino acids 66–297. Journal of Medical Virology, 2006, 78, 582-590.	2.5	24
65	The Nucleocapsid Protein of Severe Acute Respiratory Syndrome-Coronavirus Inhibits the Activity of Cyclin-Cyclin-dependent Kinase Complex and Blocks S Phase Progression in Mammalian Cells. Journal of Biological Chemistry, 2006, 281, 10669-10681.	1.6	177
66	Matrix protein 1: A comparative in silico study on different strains of influenza A H5N1 Virus. Bioinformation, 2006, 1, 253-256.	0.2	8
67	In silico analysis of genes nucleoprotein, neuraminidase and hemagglutinin: a comparative study on different strains of influenza A (Bird flu) virus sub-type H5N1. In Silico Biology, 2006, 6, 161-8.	0.4	7
68	The 41-Amino-Acid C-Terminal Region of the Hepatitis E Virus ORF3 Protein Interacts with Bikunin, a Kunitz-Type Serine Protease Inhibitor. Journal of Virology, 2005, 79, 12081-12087.	1.5	46
69	The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein Is Phosphorylated and Localizes in the Cytoplasm by 14-3-3-Mediated Translocation. Journal of Virology, 2005, 79, 11476-11486.	1.5	165
70	The Hepatitis E Virus Open Reading Frame 3 Protein Activates ERK through Binding and Inhibition of the MAPK Phosphatase. Journal of Biological Chemistry, 2004, 279, 28345-28357.	1.6	77
71	The ORF2 Protein of Hepatitis E Virus Binds the 5′ Region of Viral RNA. Journal of Virology, 2004, 78, 320-328.	1.5	83
72	PCNA Interacts with Indian Mung Bean Yellow Mosaic Virus Rep and Downregulates Rep Activity. Journal of Virology, 2004, 78, 11890-11903.	1.5	79

#	Article	IF	CITATIONS
73	The ORF3 Protein of Hepatitis E Virus Interacts with Liver-specific α1-Microglobulin and Its Precursor α1-Microglobulin/Bikunin Precursor (AMBP) and Expedites Their Export from the Hepatocyte. Journal of Biological Chemistry, 2004, 279, 29308-29319.	1.6	69
74	The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochemical and Biophysical Research Communications, 2004, 317, 1030-1036.	1.0	110
75	The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochemical Journal, 2004, 383, 13-18.	1.7	146
76	Yeast-Based Technologies for High Throughput Screening of Natural Anti-Viral Agents. , 2004, , 69-76.		0
77	Ribozymes: A modern tool in medicine. Journal of Biomedical Science, 2003, 10, 457-467.	2.6	25
78	A yeast assay for high throughput screening of natural anti-viral agents. Biochemical and Biophysical Research Communications, 2003, 301, 218-221.	1.0	2
79	Ribozymes: A Modern Tool in Medicine. Journal of Biomedical Science, 2003, 10, 457-467.	2.6	2
80	The Phosphorylated Form of the ORF3 Protein of Hepatitis E Virus Interacts with Its Non-glycosylated Form of the Major Capsid Protein, ORF2. Journal of Biological Chemistry, 2002, 277, 22759-22767.	1.6	112
81	The Liver-Specific Human α1-Microglobulin/Bikunin Precursor (AMBP) Is Capable of Self-Association. Archives of Biochemistry and Biophysics, 2002, 399, 66-72.	1.4	17
82	A liquid synchronized-growth culture assay for the identification of true positive and negative yeast three-hybrid transformants. Letters in Applied Microbiology, 2002, 34, 300-303.	1.0	5
83	A Yeast Two-Hybrid Study on Self-Association of the ORF2 Protein of Hepatitis E Virus. Biochemical and Biophysical Research Communications, 2001, 284, 614-621.	1.0	15
84	The Full-Length and N-Terminal Deletion of ORF2 Protein of Hepatitis E Virus Can Dimerize. Biochemical and Biophysical Research Communications, 2001, 286, 214-221.	1.0	14
85	The ORF3 Protein of Hepatitis E Virus Binds to Src Homology 3 Domains and Activates MAPK. Journal of Biological Chemistry, 2001, 276, 42389-42400.	1.6	132
86	Self-Association and Mapping of the Interaction Domain of Hepatitis E Virus ORF3 Protein. Journal of Virology, 2001, 75, 2493-2498.	1.5	40
87	Restoration of mRNA Splicing by a Second-Site Intragenic Suppressor in the T4 Ribonucleotide Reductase (Small Subunit) Self-Splicing Intron. Biochemical and Biophysical Research Communications, 2000, 268, 359-364.	1.0	2
88	Combined Transformation and Genetic Technique Verification of Protein–Protein Interactions in the Yeast Two-Hybrid System. Biochemical and Biophysical Research Communications, 2000, 277, 589-593.	1.0	19
89	The X gene of hepatitis B virus shows a high level stimulation of the Rous sarcoma virus long terminal repeat in the methylotropic yeast,Pichia pastoris. FEBS Letters, 1999, 456, 108-112.	1.3	1
90	Isolation and Characterization of EMS Induced Splicing Defective Point Mutations within the Intron of thenrdB Gene of Bacteriophage T4. Biochemical and Biophysical Research Communications, 1998, 242, 10-15.	1.0	3

#	Article	IF	CITATIONS
91	Expression and characterization of the hepatitis E virus ORF3 protein in the methylotrophic yeast, Pichia pastoris. Gene, 1997, 190, 63-67.	1.0	23
92	A Novel Approach for Isolation and Mapping of Intron Mutations in a Ribonucleotide Reductase Encoding Gene (nrdB) of Bacteriophage T4 Using the White Halo Plaque Phenotype. Biochemical and Biophysical Research Communications, 1993, 196, 943-949.	1.0	8