Ramesh Sivanpillai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8879405/publications.pdf Version: 2024-02-01

RAMESH SIVANDILLAL

#	Article	IF	CITATIONS
1	Improvements in mapping water bodies using ASTER data. Ecological Informatics, 2010, 5, 73-78.	2.3	64
2	Estimation of managed loblolly pine stand age and density with Landsat ETM+ data. Forest Ecology and Management, 2006, 223, 247-254.	1.4	47
3	Mapping locust habitats in River Ili Delta, Kazakhstan, using Landsat imagery. Agriculture, Ecosystems and Environment, 2006, 117, 128-134.	2.5	43
4	Rapid flood inundation mapping by differencing water indices from pre- and post-flood Landsat images. Frontiers of Earth Science, 2021, 15, 1-11.	0.9	39
5	Mapping Locust Habitats in the Amudarya River Delta, Uzbekistan with Multi-Temporal MODIS Imagery. Environmental Management, 2007, 39, 876-886.	1.2	35
6	Glacier Variability in the Wind River Range, Wyoming. Journal of Hydrologic Engineering - ASCE, 2011, 16, 798-805.	0.8	26
7	Estimating regional forest cover in East Texas using Enhanced Thematic Mapper (ETM+) data. Forest Ecology and Management, 2005, 218, 342-352.	1.4	20
8	Locust Habitat Monitoring and Risk Assessment Using Remote Sensing and GIS Technologies. , 2010, , 163-188.		18
9	Can early season Landsat images improve locust habitat monitoring in the Amudarya River Delta of Uzbekistan. Journal of Orthoptera Research, 2007, 16, 167-173.	0.4	15
10	Can late summer Landsat data be used for locating Asian migratory locust,Locustamigratoriamigratoria, oviposition sites in the Amudarya River delta, Uzbekistan?. Entomologia Experimentalis Et Applicata, 2008, 128, 346-353.	0.7	15
11	Glacier Variability (1967â€2006) in the Teton Range, Wyoming, United States ¹ . Journal of the American Water Resources Association, 2012, 48, 187-196.	1.0	14
12	Estimating sagebrush cover in semi-arid environments using Landsat Thematic Mapper data. International Journal of Applied Earth Observation and Geoinformation, 2009, 11, 103-107.	1.4	13
13	Mapping land cover change of the Luvuvhu catchment, South Africa for environmental modelling. Geo Journal, 2010, 75, 163-173.	1.7	13
14	A graph-theoretic analysis of relationships among ecosystem stressors. Journal of Environmental Management, 1999, 57, 109-122.	3.8	11
15	Estimating regional forest cover in East Texas using Advanced Very High Resolution Radiometer (AVHRR) data. International Journal of Applied Earth Observation and Geoinformation, 2007, 9, 41-49.	1.4	11
16	Characterizing rangeland vegetation using Landsat and 1-mm VLSA data in central Wyoming (USA). Agroforestry Systems, 2008, 73, 55-64.	0.9	11
17	Benefits of panâ€sharpened Landsat imagery for mapping small waterbodies in the Powder River Basin, Wyoming, USA. Lakes and Reservoirs: Research and Management, 2008, 13, 69-76.	0.6	9
18	Glacier Impacts on Summer Streamflow in the Wind River Range, Wyoming. Journal of Hydrologic Engineering - ASCE, 2012, 17, 521-527.	0.8	9

#	Article	IF	CITATIONS
19	COMPARISON OF IMAGE ENHANCEMENT TECHNIQUES FOR RAPID PROCESSING OF POST FLOOD IMAGES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-2-2020, 45-50.	0.2	8
20	IDENTIFYING EPIPHYTES IN DRONES PHOTOS WITH A CONDITIONAL GENERATIVE ADVERSARIAL NETWORK (C-GAN). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-2-2020, 99-104.	0.2	7
21	Relationship between sagebrush species and structural characteristics and <scp>L</scp> andsat <scp>T</scp> hematic <scp>M</scp> apper data. Applied Vegetation Science, 2013, 16, 122-130.	0.9	6
22	Relating AEROCam-derived NDVI to apparent soil electrical conductivity (ECa) for corn fields in Wyoming, USA. Remote Sensing Letters, 2012, 3, 49-56.	0.6	5
23	OPTIMIZING LOW-COST UAV AERIAL IMAGE MOSAICING FOR CROP GROWTH MONITORING. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-3-2021, 7-12.	0.2	5
24	Near real-time high-resolution airborne camera, AEROCam, for precision agriculture. Geocarto International, 2011, 26, 537-551.	1.7	4
25	Accessing satellite imagery for disaster response through the International Charter: Lessons learned from the 2011 US Midwestern Floods. Space Policy, 2017, 42, 54-61.	0.8	4
26	WyomingView: No-Cost Remotely Sensed Data for Geographic Education. Journal of Geography, 2009, 107, 154-160.	1.8	3
27	A novel synergistic fibroblast optimization based Kalman estimation model for forecasting time-series data. Evolving Systems, 2019, 10, 205-220.	2.4	3
28	Comparative analyses of East Texas forest cover maps generated from Landsat and AVHRR data. Geo Journal, 2008, 71, 211-220.	1.7	2
29	Special Section Guest Editorial: Advances in Remote Sensing Applications for Locust Habitat Monitoring and Management. Journal of Applied Remote Sensing, 2015, 8, 084801.	0.6	2
30	IDENTIFYING OIL PADS IN HIGH SPATIAL RESOLUTION AERIAL IMAGES USING FASTER R-CNN. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-3-2021, 155-161.	0.2	2
31	WyomingView: Integrating Landsat-based Earth Observation in Sixth Grade Science Curricula. Photogrammetric Engineering and Remote Sensing, 2015, 81, 425-431.	0.3	1
32	Future Landsat Data Needs at the Local and State Levels: An AmericaView Perspective. Photogrammetric Engineering and Remote Sensing, 2016, 82, 617-623.	0.3	1
33	An intelligent estimation model for water quality parameters assessment at Periyakulam Lake, South India. , 2021, , 161-193.		1
34	Landsat. Geographic Information Science & Technology Body of Knowledge, 2021, 2021, .	0.1	1
35	Delineating crop management zones in small fields using multi-temporal Landsat data. Proceedings of SPIE, 2016, , .	0.8	0
36	ANALYSIS OF FOUR GENERATOR ARCHITECTURES OF C-GAN, LOSS FUNCTION, AND ANNOTATION METHOD FOR EPIPHYTE IDENTIFICATION. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-3-2021, 149-153.	0.2	0

#	Article	IF	CITATIONS
37	NO-COST LANDSAT DATA REDEFINES STUDENT RESEARCH PROJECTS IN APPLIED REMOTE SENSING CLASSES AT UW. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W11, 143-146.	0.2	0
38	Relating leaf spectral reflectance to its color: an inquiry-based activity to enhance understanding of electromagnetic radiation. Science Activities, 2019, 56, 19-26.	0.4	0
39	SUNBATHED ASPEN GROW TO SHOW HOW SUNLIGHT INFLUENCES ASPEN LEAF CHANGES IN THE AUTUMN SEASON. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-2-2020, 105-110.	0.2	0
40	EVALUATION OF CONVERTING LANDSAT DN TO TA AND SR VALUES ON SELECT SPECTRAL INDICES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-2-2020, 29-36.	0.2	0