Bailin Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8879229/publications.pdf

Version: 2024-02-01

759233 839539 1,065 22 12 18 citations h-index g-index papers 22 22 22 1503 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Polyphyly in 16S rRNA-based LVTree Versus Monophyly in Whole-genome-based CVTree. Genomics, Proteomics and Bioinformatics, 2018, 16, 310-319.	6.9	8
2	On monospecific genera in prokaryotic taxonomy. Synthetic and Systems Biotechnology, 2017, 2, 226-235.	3.7	5
3	Whole-Genome-Based Phylogeny and Taxonomy for Prokaryotes. , 2017, , .		1
4	LVTree Viewer: An Interactive Display for the All-Species Living Tree Incorporating Automatic Comparison with Prokaryotic Systematics. Genomics, Proteomics and Bioinformatics, 2016, 14, 94-102.	6.9	3
5	Skeleton graph expansion of critical exponents in "cultural revolution―years. , 2016, , 3-27.		O
6	Whole-genome-based phylogeny supports the objections against the reclassification of Eubacterium rectale to Agathobacter rectalis. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2451-2451.	1.7	6
7	CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy. Genomics, Proteomics and Bioinformatics, 2015, 13, 321-331.	6.9	185
8	Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis. Life, 2015, 5, 949-968.	2.4	26
9	Skeleton graph expansion of critical exponents in "cultural revolution" years. International Journal of Modern Physics B, 2014, 28, 1430008.	2.0	O
10	On K-peptide length in composition vector phylogeny of prokaryotes. Computational Biology and Chemistry, 2014, 53, 166-173.	2.3	16
11	Geographic divergence of "Sulfolobus islandicus―strains assessed by genomic analyses including electronic DNA hybridization confirms they are geovars. Antonie Van Leeuwenhoek, 2014, 105, 431-435.	1.7	6
12	<i>Shigella</i> Strains Are Not Clones of <i>Escherichia Coli</i> but Sister Species in the Genus <i>Escherichia</i> Genomics, Proteomics and Bioinformatics, 2013, 11, 61-65.	6.9	52
13	Whole-genome based Archaea phylogeny and taxonomy: A composition vector approach. Science Bulletin, 2010, 55, 2323-2328.	1.7	6
14	Composition vector approach to whole-genome-based prokaryotic phylogeny: Success and foundations. Journal of Biotechnology, 2010, 149, 115-119.	3.8	31
15	Jackknife and Bootstrap Tests of the Composition Vector Trees. Genomics, Proteomics and Bioinformatics, 2010, 8, 262-267.	6.9	26
16	CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Research, 2009, 37, W174-W178.	14.5	180
17	A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evolutionary Biology, 2009, 9, 195.	3.2	194
18	Prokaryote phylogeny meets taxonomy: An exhaustive comparison of composition vector trees with systematic bacteriology. Science in China Series C: Life Sciences, 2007, 50, 587-599.	1.3	22

#	Article	IF	CITATIONS
19	CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Research, 2004, 32, W45-W47.	14.5	202
20	PROKARYOTE PHYLOGENY WITHOUT SEQUENCE ALIGNMENT: FROM AVOIDANCE SIGNATURE TO COMPOSITION DISTANCE. Journal of Bioinformatics and Computational Biology, 2004, 02, 1-19.	0.8	70
21	Molecular phylogeny of coronaviruses including human SARS-CoV. Science Bulletin, 2003, 48, 1170-1174.	1.7	22
22	Factorizable Language: From Dynamics to Biology. , 0, , 147-186.		4