Fuchun Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8878798/fuchun-sun-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

241 4,185 31 58 g-index

306 5,426 3.7 6.08 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
241	Multi-Agent Embodied Visual Semantic Navigation With Scene Prior Knowledge. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 3154-3161	4.2	1
240	REVE-CE: Remote Embodied Visual Referring Expression in Continuous Environment. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 1494-1501	4.2	0
239	Multifingered Grasping Based on Multimodal Reinforcement Learning. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 1174-1181	4.2	3
238	Robust Stability Analysis and Feedback Control for Uncertain Systems With Time-Delay and External Disturbance. <i>IEEE Transactions on Fuzzy Systems</i> , 2022 , 1-1	8.3	
237	Motion Planning and Cooperative Manipulation for Mobile Robots With Dual Arms. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2022 , 1-12	4.1	1
236	Improving Object Grasp Performance via Transformer-Based Sparse Shape Completion. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2022 , 104, 1	2.9	0
235	Tactile-based Fabric Defect Detection Using Convolutional Neural Network with Attention Mechanism. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2022 , 1-1	5.2	4
234	A review on sensory perception for dexterous robotic manipulation. <i>International Journal of Advanced Robotic Systems</i> , 2022 , 19, 172988062210959	1.4	2
233	Predictor-Based Fuzzy Adaptive Containment Control for Nonlinear Multi-Agent Systems with Actuator Nonlinearity and Unmeasurable States. <i>IEEE Transactions on Fuzzy Systems</i> , 2021 , 1-1	8.3	2
232	Fabric defect detection using tactile information 2021,		2
231	Multi-modal broad learning for material recognition. <i>Cognitive Computation and Systems</i> , 2021 , 3, 123-1	302	О
230	Semantic visual SLAM in dynamic environment. <i>Autonomous Robots</i> , 2021 , 45, 493	3	5
229	Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network. <i>Frontiers in Robotics and AI</i> , 2021 , 8, 580080	2.8	6
228	Multimode Grasping Soft Gripper Achieved by Layer Jamming Structure and Tendon-Driven Mechanism. <i>Soft Robotics</i> , 2021 ,	9.2	4
227	A novel accurate positioning method for object pose estimation in robotic manipulation based on vision and tactile sensors. <i>International Journal of Advanced Manufacturing Technology</i> , 2021 , 116, 2999	-3010	2
226	Soft Robotic Finger Embedded with Visual Sensor for Bending Perception. <i>Robotica</i> , 2021 , 39, 378-390	2.1	3
225	Toward Image-to-Tactile Cross-Modal Perception for Visually Impaired People. <i>IEEE Transactions on Automation Science and Engineering</i> , 2021 , 18, 521-529	4.9	2

(2020-2021)

224	Active Object Discovery and Localization Using Sound-Induced Attention. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 2021-2029	11.9	Ο
223	An Interactive Perception Method for Warehouse Automation in Smart Cities. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 830-838	11.9	5
222	Personal-specific gait recognition based on latent orthogonal feature space. <i>Cognitive Computation and Systems</i> , 2021 , 3, 61-69	1.2	1
221	Smart Bracelet System for Temperature Monitoring and Movement Tracking Analysis. <i>Journal of Healthcare Engineering</i> , 2021 , 2021, 8347261	3.7	3
220	Robust Hibutput feedback control for type-2 Takagi-Sugeno fuzzy systems with multiple time-delays and disturbances: A descriptor redundancy approach. <i>International Journal of Robust and Nonlinear Control</i> , 2021 , 31, 6095-6122	3.6	2
219	Cross-Individual Gesture Recognition Based on Long Short-Term Memory Networks. <i>Scientific Programming</i> , 2021 , 2021, 1-11	1.4	1
218	Visual Affordance Guided Tactile Material Recognition for Waste Recycling. <i>IEEE Transactions on Automation Science and Engineering</i> , 2021 , 1-9	4.9	0
217	A petal-array capacitive tactile sensor with micro-pin for robotic fingertip sensing 2020 ,		1
216	H-infinity stability analysis and output feedback control for fuzzy stochastic networked control systems with time-varying communication delays and multipath packet dropouts. <i>Neural Computing and Applications</i> , 2020 , 32, 14733-14751	4.8	3
215	Multi-agent Embodied Question Answering in Interactive Environments. <i>Lecture Notes in Computer Science</i> , 2020 , 663-678	0.9	2
214	A Mobile Robot Hand-Arm Teleoperation System by Vision and IMU 2020 ,		11
213	A Boundary Based Out-of-Distribution Classifier for Generalized Zero-Shot Learning. <i>Lecture Notes in Computer Science</i> , 2020 , 572-588	0.9	2
212	Layer jamming-based soft robotic hand with variable stiffness for compliant and effective grasping. <i>Cognitive Computation and Systems</i> , 2020 , 2, 44-49	1.2	7
211	Cross-Modal Material Perception for Novel Objects: A Deep Adversarial Learning Method. <i>IEEE Transactions on Automation Science and Engineering</i> , 2020 , 17, 697-707	4.9	6
210	FoveaBox: Beyound Anchor-Based Object Detection. <i>IEEE Transactions on Image Processing</i> , 2020 , 29, 7389-7398	8.7	234
209	Single Satellite Optical Imagery Dehazing using SAR Image Prior Based on conditional Generative Adversarial Networks 2020 ,		9
208	Gait Neural Network for Human-Exoskeleton Interaction. Frontiers in Neurorobotics, 2020, 14, 58	3.4	11
207	Edge Computing-Based Collaborative Vehicles 3D Mapping in Real Time. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 12470-12481	6.8	2

206	Embodied tactile perception and learning. Brain Science Advances, 2020, 6, 132-158	2	4
205	Cross-modal learning for material perception using deep extreme learning machine. <i>International Journal of Machine Learning and Cybernetics</i> , 2020 , 11, 813-823	3.8	1
204	Audiovisual cross-modal material surface retrieval. Neural Computing and Applications, 2020, 32, 14301-	14809	О
203	PointNetGPD: Detecting Grasp Configurations from Point Sets 2019 ,		66
202	Lifelong Learning for Heterogeneous Multi-Modal Tasks 2019,		5
201	Sound-Indicated Visual Object Detection for Robotic Exploration 2019,		2
200	Survey of imitation learning for robotic manipulation. <i>International Journal of Intelligent Robotics and Applications</i> , 2019 , 3, 362-369	1.7	24
199	Cross-Modal Surface Material Retrieval Using Discriminant Adversarial Learning. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 4978-4987	11.9	15
198	Autoencoder-based transfer learning in brainflomputer interface for rehabilitation robot. <i>International Journal of Advanced Robotic Systems</i> , 2019 , 16, 172988141984086	1.4	9
197	Adaptive Cutoff Distance Based Density Peak Pivot for Metric Space Outlier Detection. <i>Communications in Computer and Information Science</i> , 2019 , 393-405	0.3	
196	Attention-based Transfer Learning for Brain-computer Interface 2019,		4
195	Multimodal grasp data set: A novel visualEactile data set for robotic manipulation. <i>International Journal of Advanced Robotic Systems</i> , 2019 , 16, 172988141882157	1.4	10
194	A glove-based system for object recognition via visual-tactile fusion. <i>Science China Information Sciences</i> , 2019 , 62, 1	3.4	5
193	Local receptive field based extreme learning machine with three channels for histopathological image classification. <i>International Journal of Machine Learning and Cybernetics</i> , 2019 , 10, 1437-1447	3.8	6
192	LDS-FCM: A Linear Dynamical System Based Fuzzy C-Means Method for Tactile Recognition. <i>IEEE Transactions on Fuzzy Systems</i> , 2019 , 27, 72-83	8.3	10
191	Automatic Object Searching and Behavior Learning for Mobile Robots in Unstructured Environment by Deep Belief Networks. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 395-404	3	9
190	Interactive video summarization with human intentions. <i>Multimedia Tools and Applications</i> , 2019 , 78, 1737-1755	2.5	1
189	Attention Based Visual Analysis for Fast Grasp Planning With a Multi-Fingered Robotic Hand. <i>Frontiers in Neurorobotics</i> , 2019 , 13, 60	3.4	2

(2018-2019)

188	Autonomous robot navigation using Retinex algorithm for multiscale image adaptability in low-light environment. <i>Intelligent Service Robotics</i> , 2019 , 12, 359-369	2.6	8	
187	Notice of Violation of IEEE Publication Principles: A Miniaturized Five-Axis Isotropic Tactile Sensor for Robotic Manipulation. <i>IEEE Sensors Journal</i> , 2019 , 19, 10243-10252	4	6	
186	A novel multi-modal tactile sensor design using thermochromic material. <i>Science China Information Sciences</i> , 2019 , 62, 1	3.4	6	
185	Vision-Based Tactile Perception for Soft Robotic Hand* 2019 ,		4	
184	Learning cross-modal visual-tactile representation using ensembled generative adversarial networks. <i>Cognitive Computation and Systems</i> , 2019 , 1, 40-44	1.2	7	
183	Deep Reinforcement Learning for Robotic Pushing and Picking in Cluttered Environment 2019,		15	
182	Making Sense of Audio Vibration for Liquid Height Estimation in Robotic Pouring 2019,		8	
181	Open-Environment Robotic Acoustic Perception for Object Recognition. <i>Frontiers in Neurorobotics</i> , 2019 , 13, 96	3.4	3	
180	Dynamic Gesture Recognition Using Inertial Sensors-based Data Gloves 2019,		7	
179	Surface Material Retrieval Using Weakly Paired Cross-Modal Learning. <i>IEEE Transactions on Automation Science and Engineering</i> , 2019 , 16, 781-791	4.9	16	
178	Robotic Material Perception Using Active Multimodal Fusion. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 9878-9886	8.9	22	
177	An adaptive PNN-DS approach to classification using multi-sensor information fusion. <i>Neural Computing and Applications</i> , 2019 , 31, 693-705	4.8	1	
176	Haptic recognition using hierarchical extreme learning machine with local-receptive-field. <i>International Journal of Machine Learning and Cybernetics</i> , 2019 , 10, 541-547	3.8	6	
175	Fused Fuzzy Petri Nets: A Shared Control Method for BrainComputer Interface Systems. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2019 , 11, 188-199	3	5	
174	Weakly paired multimodal fusion using multilayer extreme learning machine. <i>Soft Computing</i> , 2018 , 22, 3533-3544	3.5	8	
173	Material Identification Using Tactile Perception: A Semantics-Regularized Dictionary Learning Method. <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 1050-1058	5.5	20	
172	Active object recognition using hierarchical local-receptive-field-based extreme learning machine. <i>Memetic Computing</i> , 2018 , 10, 233-241	3.4	18	
171	Surface Material Recognition Using Active Multi-modal Extreme Learning Machine. <i>Cognitive Computation</i> , 2018 , 10, 937-950	4.4	6	

170	Small sample learning with high order contractive auto-encoders and application in SAR images. <i>Science China Information Sciences</i> , 2018 , 61, 1	3.4	1
169	End-to-End ConvNet for Tactile Recognition Using Residual Orthogonal Tiling and Pyramid Convolution Ensemble. <i>Cognitive Computation</i> , 2018 , 10, 718-736	4.4	7
168	A Review of EEG-Based Brain-Computer Interface Systems Design. <i>Brain Science Advances</i> , 2018 , 4, 156-	1 <u>6</u> 7	21
167	Experiment on impedance adaptation of under-actuated gripper using tactile array under unknown environment. <i>Science China Information Sciences</i> , 2018 , 61, 1	3.4	5
166	Brain-inspired Multimodal Learning Based on Neural Networks. <i>Brain Science Advances</i> , 2018 , 4, 61-72	2	5
165	Wood material recognition for industrial applications. <i>Systems Science and Control Engineering</i> , 2018 , 6, 346-358	2	1
164	A Dual-Modal Vision-Based Tactile Sensor for Robotic Hand Grasping 2018,		19
163	A novel mode controllable hybrid valve pressure control method for soft robotic gripper. International Journal of Advanced Robotic Systems, 2018, 15, 172988141880214	1.4	4
162	Adaptive Adversarial Transfer Learning for Electroencephalography Classification 2018,		3
161	Active Object Detection Using Double DQN and Prioritized Experience Replay 2018,		3
160	Deep Transfer Learning for EEG-Based Brain Computer Interface 2018,		10
159	Visuallactile Fusion for Object Recognition. <i>IEEE Transactions on Automation Science and Engineering</i> , 2017 , 14, 996-1008	4.9	140
158	Disturbance Observer Based Composite Learning Fuzzy Control of Nonlinear Systems with Unknown Dead Zone. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2017 , 47, 1854-1862	7.3	110
157	Robotic grasping recognition using multi-modal deep extreme learning machine. <i>Multidimensional Systems and Signal Processing</i> , 2017 , 28, 817-833	1.8	21
156	Denoising deep extreme learning machine for sparse representation. <i>Memetic Computing</i> , 2017 , 9, 199-	231.4	13
155	Structured Output-Associated Dictionary Learning for Haptic Understanding. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2017 , 47, 1564-1574	7.3	40
154	Spatial and spectral features fusion for EEG classification during motor imagery in BCI 2017,		7
153	Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine. <i>Frontiers of Computer Science</i> , 2017 , 11, 276-289	2.2	2

152	Operation action recognition using wearable devices with inertial sensors 2017,		2
151	An Asynchronous Mi-Based BCI for Brain-Actuated Robot Grasping Control 2017 ,		1
150	A hybrid deep architecture for robotic grasp detection 2017,		56
149	Neural-network-based integral sliding-mode tracking control of second-order multi-agent systems with unmatched disturbances and completely unknown dynamics. <i>International Journal of Control, Automation and Systems</i> , 2017 , 15, 1925-1935	2.9	15
148	Deep vision networks for real-time robotic grasp detection. <i>International Journal of Advanced Robotic Systems</i> , 2017 , 14, 172988141668270	1.4	17
147	Robotic Room-Level Localization Using Multiple Sets of Sonar Measurements. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2017 , 66, 2-13	5.2	58
146	The consensus region design and analysis of fractional-order multi-agent systems. <i>International Journal of Systems Science</i> , 2017 , 48, 629-636	2.3	16
145	BrainMachine Interfacing-Based Teleoperation of Multiple Coordinated Mobile Robots. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 5161-5170	8.9	21
144	RON: Reverse Connection with Objectness Prior Networks for Object Detection 2017,		210
143	Learning to detect slip for stable grasping 2017 ,		2
143	Learning to detect slip for stable grasping 2017, Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units. Scientific Programming, 2017, 2017, 1-11	1.4	2 11
	Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial	2.3	
142	Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units. <i>Scientific Programming</i> , 2017 , 2017, 1-11 Cluster consensus of high-order multi-agent systems with switching topologies. <i>International</i>	,	
142	Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units. <i>Scientific Programming</i> , 2017 , 2017, 1-11 Cluster consensus of high-order multi-agent systems with switching topologies. <i>International Journal of Systems Science</i> , 2016 , 47, 2859-2868	2.3	11
142 141 140	Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units. <i>Scientific Programming</i> , 2017 , 2017, 1-11 Cluster consensus of high-order multi-agent systems with switching topologies. <i>International Journal of Systems Science</i> , 2016 , 47, 2859-2868 Virtual Strategy QoS routing in satellite networks. <i>Science China Information Sciences</i> , 2016 , 59, 1 Cognitively Inspired 6D Motion Estimation of a Noncooperative Target Using Monocular RGB-D	2.3	11 9 1
142 141 140	Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units. <i>Scientific Programming</i> , 2017 , 2017, 1-11 Cluster consensus of high-order multi-agent systems with switching topologies. <i>International Journal of Systems Science</i> , 2016 , 47, 2859-2868 Virtual Strategy QoS routing in satellite networks. <i>Science China Information Sciences</i> , 2016 , 59, 1 Cognitively Inspired 6D Motion Estimation of a Noncooperative Target Using Monocular RGB-D Images. <i>Cognitive Computation</i> , 2016 , 8, 105-113 Object Classification and Grasp Planning Using Visual and Tactile Sensing. <i>IEEE Transactions on</i>	2.3 3.4 4.4	11 9 1
142 141 140 139	Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units. <i>Scientific Programming</i> , 2017 , 2017, 1-11 Cluster consensus of high-order multi-agent systems with switching topologies. <i>International Journal of Systems Science</i> , 2016 , 47, 2859-2868 Virtual Strategy QoS routing in satellite networks. <i>Science China Information Sciences</i> , 2016 , 59, 1 Cognitively Inspired 6D Motion Estimation of a Noncooperative Target Using Monocular RGB-D Images. <i>Cognitive Computation</i> , 2016 , 8, 105-113 Object Classification and Grasp Planning Using Visual and Tactile Sensing. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2016 , 46, 969-979	2.3 3.4 4.4 7.3	11 9 1 1 42

134	Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2016 , 65, 656-665	5.2	142
133	Discovery of Topical Objects from Video: A Structured Dictionary Learning Approach. <i>Cognitive Computation</i> , 2016 , 8, 519-528	4.4	6
132	Scaled cluster consensus of discrete-time multi-agent systems with general directed topologies. <i>International Journal of Systems Science</i> , 2016 , 47, 3839-3845	2.3	16
131	Complexity of Routing in Store-and-Forward LEO Satellite Networks. <i>IEEE Communications Letters</i> , 2016 , 20, 89-92	3.8	10
130	Low-Rank Linear Dynamical Systems for Motor Imagery EEG. <i>Computational Intelligence and Neuroscience</i> , 2016 , 2016, 2637603	3	7
129	Object discovery and grasp detection with a shared convolutional neural network 2016 ,		16
128	An effective method for grasp planning on objects with complex geometry combining human experience and analytical approach. <i>Science China Information Sciences</i> , 2016 , 59, 1	3.4	2
127	A novel data glove for fingers motion capture using inertial and magnetic measurement units 2016 ,		3
126	RRT-GD: An efficient rapidly-exploring random tree approach with goal directionality for redundant manipulator path planning 2016 ,		4
125	Learning Cooperative Primitives with physical Human-Robot Interaction for a HUman-powered Lower EXoskeleton 2016 ,		8
124	HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection 2016,		387
123	A statistical learning based image denoising approach. Frontiers of Computer Science, 2015, 9, 713-719	2.2	O
122	Data Fusion-based resilient control system under DoS attacks: A game theoretic approach. <i>International Journal of Control, Automation and Systems</i> , 2015 , 13, 513-520	2.9	25
121	Resilient control in the presence of DoS attack: Switched system approach. <i>International Journal of Control, Automation and Systems</i> , 2015 , 13, 1423-1435	2.9	40
12 0	Non-blind deblurring of structured images with geometric deformation. <i>Visual Computer</i> , 2015 , 31, 131	-1:4:0	6
119	Extended-state-observer-based adaptive control for synchronisation of multi-agent systems with unknown nonlinearities. <i>International Journal of Systems Science</i> , 2015 , 46, 2520-2530	2.3	15
118	3D moth-inspired chemical plume tracking 2015 ,		1
117	Consensus of second-order multi-agent systems with time-varying delays and antagonistic interactions. <i>Tsinghua Science and Technology</i> , 2015 , 20, 205-211	3.4	2

(2014-2015)

116	Low-frequency robust control for singularly perturbed system. <i>IET Control Theory and Applications</i> , 2015 , 9, 203-210	2.5	7
115	HMAX model: A survey 2015 ,		4
114	Transmissive optical pretouch sensing for robotic grasping 2015,		6
113	Stabilization and Separation Principle of Networked Control Systems Using the TB Fuzzy Model Approach. <i>IEEE Transactions on Fuzzy Systems</i> , 2015 , 23, 1832-1843	8.3	16
112	A survivable routing protocol for two-layered LEO/MEO satellite networks. <i>Wireless Networks</i> , 2014 , 20, 871-887	2.5	16
111	Joint Block Structure Sparse Representation for Multi-InputMulti-Output (MIMO) TB Fuzzy System Identification. <i>IEEE Transactions on Fuzzy Systems</i> , 2014 , 22, 1387-1400	8.3	19
110	Adaptive Fuzzy Control for Multilateral Cooperative Teleoperation of Multiple Robotic Manipulators Under Random Network-Induced Delays. <i>IEEE Transactions on Fuzzy Systems</i> , 2014 , 22, 437-450	8.3	135
109	Sliding-Mode Predictive Control of Networked Control Systems Under a Multiple-Packet Transmission Policy. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 6234-6243	8.9	40
108	Gain Scheduling Control of Delta Operator System Using Network-Based Measurements. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2014 , 63, 538-547	5.2	8
107	Fast Low-Rank Subspace Segmentation. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2014 , 26, 1293-1297	4.2	31
106	Attitude tracking control for hypersonic vehicles based on type-2 fuzzy dynamic characteristic modeling method 2014 ,		3
105	A system of robotic grasping with experience acquisition. <i>Science China Information Sciences</i> , 2014 , 57, 1-11	3.4	4
104	Implementation of fuzzy color extractor on NI myRIO embedded device 2014,		3
103	Vessel track information mining using AIS data 2014 ,		11
102	Architecture and navigation strategy of BCI based semi-autonomous mobile robot 2014,		1
101	Stationary and dynamic consensus of second-order multi-agent systems with Markov jumping input delays. <i>IET Control Theory and Applications</i> , 2014 , 8, 1905-1913	2.5	9
100	Stabilisation of networked delta operator systems with uncertainty. <i>IET Control Theory and Applications</i> , 2014 , 8, 2289-2296	2.5	4
99	A QoS-Oriented Congestion Control Mechanism for Satellite Networks. <i>Mathematical Problems in Engineering</i> , 2014 , 2014, 1-13	1.1	2

98	Secure the control system against DoS attacks: A JDL data fusion method 2014,		1
97	Fuzzy Adaptive Disturbance-Observer-Based Robust Tracking Control of Electrically Driven Free-Floating Space Manipulator. <i>IEEE Systems Journal</i> , 2014 , 8, 343-352	4.3	50
96	Linear dynamic system method for tactile object classification. <i>Science China Information Sciences</i> , 2014 , 57, 1-11	3.4	6
95	Multitask Extreme Learning Machine for Visual Tracking. <i>Cognitive Computation</i> , 2014 , 6, 391-404	4.4	13
94	New results on static output feedback H []control for fuzzy singularly perturbed systems: a linear matrix inequality approach. <i>International Journal of Robust and Nonlinear Control</i> , 2013 , 23, 681-694	3.6	28
93	Routing for predictable Multi-Layered Satellite Networks. <i>Science China Information Sciences</i> , 2013 , 56, 1-18	3.4	2
92	Supervised Low-Rank Matrix Recovery for Traffic Sign Recognition in Image Sequences. <i>IEEE Signal Processing Letters</i> , 2013 , 20, 241-244	3.2	15
91	An adaptive P300 model for controlling a humanoid robot with mind 2013 ,		8
90	Resilient control of cyber-physical systems against Denial-of-Service attacks 2013,		49
89	A grasp synthesis and grasp synergy analysis for anthropomorphic hand 2013,		1
88	Rectification of Optical Characters as Transform Invariant Low-Rank Textures 2013,		3
87	Multiple Geometry Transform Estimation from Single Camera-Captured Text Image 2013,		2
86	Dynamic Fault-Tolerant Routing Based on FSA for LEO Satellite Networks. <i>IEEE Transactions on Computers</i> , 2013 , 62, 1945-1958	2.5	20
85	Delay-Dependent Fuzzy Control of Networked Control Systems and Its Application. <i>Mathematical Problems in Engineering</i> , 2013 , 2013, 1-9	1.1	
84	Virtual Topology for LEO Satellite Networks Based on Earth-Fixed Footprint Mode. <i>IEEE Communications Letters</i> , 2013 , 17, 357-360	3.8	38
83	An OpenViBE-based brainwave control system for Cerebot 2013,		6
82	Fusion tracking in color and infrared images using joint sparse representation. <i>Science China Information Sciences</i> , 2012 , 55, 590-599	3.4	54
81	A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using a Few Labeled Samples. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2012 , 50, 2287-2302	8.1	110

80	Decentralized multi-objective robust control of interconnected fuzzy singular perturbed model with multiple perturbation parameters 2012 ,		1
79	Direct neural discrete control of hypersonic flight vehicle. <i>Nonlinear Dynamics</i> , 2012 , 70, 269-278	5	71
78	A dynamic T-S fuzzy systems identification algorithm based on sparsity regularization 2012,		1
77	A Novel Distributed Routing Algorithm for LEO Satellite Network 2012 ,		3
76	Information fusion-based mobile robot path control 2012,		1
75	Dexterous robotic hand grasp modeling using piecewise linear dynamic model 2012 ,		4
74	Person re-identification based on visual saliency 2012 ,		10
73	Peaking Free HGO Based Neural Hypersonic Flight Vehicle Control 2012 ,		1
72	A new result on state feedback robust stabilization for discrete-time fuzzy singularly perturbed systems. <i>Asian Journal of Control</i> , 2012 , 14, 784-794	1.7	9
71	Maximal terminal region approach for MPC using subsets sequence. <i>Frontiers of Electrical and Electronic Engineering</i> , 2012 , 7, 270-278		
7º	Robust consensus for networked mechanical systems with coupling time delay. <i>International Journal of Control, Automation and Systems</i> , 2012 , 10, 227-237	2.9	14
69	An efficient population diversity measure for improved particle swarm optimization algorithm 2012 ,		2
68	Estimating viewing angles in mobile street view search 2012 ,		1
67	Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. <i>International Journal of Control</i> , 2011 , 84, 1543-1552	1.5	102
66	A novel routing algorithm based on dynamic clustering for LEO satellite networks 2011 ,		1
65	Gain-Scheduling-Based State Feedback Integral Control for Networked Control Systems. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 2465-2472	8.9	46
64	Mixed H2HIcontrol using a fuzzy singularly perturbed model with multiple perturbation parameters for gust load alleviation. <i>Tsinghua Science and Technology</i> , 2011 , 16, 344-351	3.4	6
63	Multi-objective robust control based on fuzzy singularly perturbed models for hypersonic vehicles. <i>Science China Information Sciences</i> , 2011 , 54, 563-576	3.4	16

62	Optimal four-impulse rendezvous between coplanar elliptical orbits. <i>Science China: Physics, Mechanics and Astronomy</i> , 2011 , 54, 792-802	3.6	4
61	Pulse coupled neural network edge-based algorithm for image text locating. <i>Tsinghua Science and Technology</i> , 2011 , 16, 22-30	3.4	5
60	EDA-based output tracking control for networked control systems with time delays and packet losses 2011 ,		1
59	Passive four-channel multilateral shared control architecture in teleoperation 2010,		7
58	A Multi-QoS Objective Optimization Routing for Hierarchical Satellite Networks 2010,		1
57	A QoS Routing Scheme Based on Ground Station for LEO Satellite Networks 2010 ,		1
56	Distributed 6DOF coordination control of spacecraft formation with coupling time delay 2010,		4
55	Visual Tracking Using Sparsity Induced Similarity 2010 ,		14
54	Active fault-tolerant control design for T-S fuzzy systems with application to a near space vehicle 2010 ,		2
53	Quotient space-based boundary condition for particle swarm optimization algorithm 2010,		1
53 52	Quotient space-based boundary condition for particle swarm optimization algorithm 2010, Flight behavior recognizing in terminal area based on support vector machine 2010,		1
		3.5	
52	Flight behavior recognizing in terminal area based on support vector machine 2010 , Online chaotic time series prediction using unbiased composite kernel machine via Cholesky	3·5 4.8	1
52 51	Flight behavior recognizing in terminal area based on support vector machine 2010 , Online chaotic time series prediction using unbiased composite kernel machine via Cholesky factorization. <i>Soft Computing</i> , 2010 , 14, 931-944 A robust training algorithm of discrete-time MIMO RNN and application in fault tolerant control of		1
52 51 50	Flight behavior recognizing in terminal area based on support vector machine 2010, Online chaotic time series prediction using unbiased composite kernel machine via Cholesky factorization. Soft Computing, 2010, 14, 931-944 A robust training algorithm of discrete-time MIMO RNN and application in fault tolerant control of robotic system. Neural Computing and Applications, 2010, 19, 1013-1027 The direct adaptive control based on the singularly perturbed model with the unknown	4.8	1 9 13
52 51 50 49	Flight behavior recognizing in terminal area based on support vector machine 2010, Online chaotic time series prediction using unbiased composite kernel machine via Cholesky factorization. Soft Computing, 2010, 14, 931-944 A robust training algorithm of discrete-time MIMO RNN and application in fault tolerant control of robotic system. Neural Computing and Applications, 2010, 19, 1013-1027 The direct adaptive control based on the singularly perturbed model with the unknown consequence parameters. International Journal of Control, Automation and Systems, 2010, 8, 238-243 A sustainable heuristic QoS routing algorithm for pervasive multi-layered satellite wireless	4.8 2.9	1 9 13 2
52 51 50 49 48	Flight behavior recognizing in terminal area based on support vector machine 2010, Online chaotic time series prediction using unbiased composite kernel machine via Cholesky factorization. Soft Computing, 2010, 14, 931-944 A robust training algorithm of discrete-time MIMO RNN and application in fault tolerant control of robotic system. Neural Computing and Applications, 2010, 19, 1013-1027 The direct adaptive control based on the singularly perturbed model with the unknown consequence parameters. International Journal of Control, Automation and Systems, 2010, 8, 238-243 A sustainable heuristic QoS routing algorithm for pervasive multi-layered satellite wireless networks. Wireless Networks, 2010, 16, 1657-1673	4.8 2.9	1 9 13 2 59

(2006-2009)

44	An adaptive PNN-DS approach to classification using multi-sensor information fusion. <i>Neural Computing and Applications</i> , 2009 , 18, 455-467	4.8	6
43	Ciphertext verification security of symmetric encryption schemes. <i>Science in China Series F: Information Sciences</i> , 2009 , 52, 1617-1631		5
42	Using IND-CVA for constructing secure communication. <i>Science in China Series F: Information Sciences</i> , 2009 , 52, 1801-1811		
41	A new approach to fuzzy modeling and control for nonlinear dynamic systems: Neuro-fuzzy dynamic characteristic modeling and adaptive control mechanism. <i>International Journal of Control, Automation and Systems</i> , 2009 , 7, 123-132	2.9	10
40	Dependent controllability for two time-scale systems. <i>Tsinghua Science and Technology</i> , 2009 , 14, 271-2	28904	
39	Decentralized UAV formation tracking flight control using gyroscopic force 2009,		2
38	Color vision-based multi-level analysis and fusion for road area detection 2008,		2
37	Fuzzy Particle Filtering for Uncertain Systems. <i>IEEE Transactions on Fuzzy Systems</i> , 2008 , 16, 1114-1129	8.3	16
36	AQoS routing based on heuristic algorithm for Double-Layered Satellite Networks 2008,		3
35	Fusion tracking in color and infrared images using sequential belief propagation 2008,		1
34	An adaptive feature fusion framework for multi-class classification based on SVM. <i>Soft Computing</i> , 2008 , 12, 685-691	3.5	7
33	A novel QoS routing protocol for LEO and MEO satellite networks. <i>International Journal of Satellite Communications and Networking</i> , 2007 , 25, 603-617	1.7	25
32	Vehicle tracking using stochastic fusion-based particle filter 2007 ,		1
31	A Constructive Approach to Approximate Linear Periodic Systems. <i>IEEE Transactions on Automatic Control</i> , 2007 , 52, 541-546	5.9	3
30	Symmetry-Aided Particle Filter for Vehicle Tracking. <i>Proceedings - IEEE International Conference on Robotics and Automation</i> , 2007 ,		5
29	Neuro-Fuzzy Dynamic-Inversion-Based Adaptive Control for Robotic Manipulators Discrete Time Case. <i>IEEE Industrial Electronics Magazine</i> , 2007 , 54, 1342-1351	6.2	54
28	Universal Approximation for Takagi-Sugeno Fuzzy Systems Using Dynamically Constructive Method-SISO Cases 2007 ,		1
27	Online Route Planner for Unmanned Air Vehicle Navigation in Unknown Battlefield Environment 2006 ,		4

26	A Writer Recognition approach Based on SVM 2006 ,		4
25	Fuzzy Characteristic Model Based Intelligent Adaptive Control for Aerospace Craft 2006,		1
24	Cloud Model-based Controller Design for Flexible-Link Manipulators 2006,		3
23	Robust control of uncertain discrete-time Markovian jump systems with actuator saturation. <i>International Journal of Control</i> , 2006 , 79, 805-812	1.5	43
22	Benchmarkinng of Routing Protocols for Layered Satellite Networks 2006,		2
21	Stable Fuzzy Adaptive Controller Design For Nonlinear Singularly Perturbed Systems 2006,		1
20	Fuzzy clustering with novel separable criterion. <i>Tsinghua Science and Technology</i> , 2006 , 11, 50-53	3.4	17
19	Stability analysis and synthesis of fuzzy singularly perturbed systems. <i>IEEE Transactions on Fuzzy Systems</i> , 2005 , 13, 273-284	8.3	75
18	Evolutionary route planner for unmanned air vehicles 2005 , 21, 609-620		182
17	Neuro-fuzzy system modeling based on automatic fuzzy clustering. <i>Journal of Control Theory and Applications</i> , 2005 , 3, 121-130		1
16	Optimal Trajectory Planning of a Flexible Dual-Arm Space Robot with Vibration Reduction. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2004 , 40, 147-163	2.9	16
15	Design of reduced-order H/sub /spl infin// filter for Markovian jumping systems with time delay. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2004 , 51, 607-612		61
14	Neural network-based adaptive controller design of robotic manipulators with an observer. <i>IEEE Transactions on Neural Networks</i> , 2001 , 12, 54-67		65
13	Path control of a surface ship in restricted waters using sliding mode. <i>IEEE Transactions on Control Systems Technology</i> , 2000 , 8, 722-732	4.8	43
12	Stable Neuro-Adaptive Control for Robots with the Upper Bound Estimation on the Neural Approximation Errors. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 1999 , 26, 91-1	00 9	9
11	Stable Sampled-data Adaptive Control of Robot Arms Using Neural Networks. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 1997 , 20, 131-155	2.9	7
10	The adaptive sliding mode control based on a fuzzy neural network for manipulators		4
9	A multirate adaptive composite controller for flexible-link robots using neural networks		1

LIST OF PUBLICATIONS

8	Guaranteed cost control for NCSs via a discrete-time jump fuzzy system approach		1
7	HIFeedback Control of Fuzzy Singular Perturbed System		1
6	Space robot modeling and control considering the effect of orbital mechanics		2
5	Fuzzy control for nonlinear singularly perturbed systems with time-delay		2
4	Improved validation index for fuzzy clustering		8
3	Path control of a surface ship in restricted waters using sliding mode		7
2	Towards Embodied Scene Description		4
1	Embodied scene description. <i>Autonomous Robots</i> ,1	3	O