Piotr SÅ, obodzian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8878439/publications.pdf

Version: 2024-02-01

1651377 1637695 29 94 9 6 citations h-index g-index papers 29 29 29 89 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Simple Method for Improving Accuracy in Determining the Beam Axis of an Antenna. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 119-123.	2.4	3
2	A Method for Determining Sorted Level Curves in the Radiation Pattern of an Antenna. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 838-842.	2.4	3
3	Broadband Dielectric Measurement of PCB and Substrate Materials by Means of a Microstrip Line of Adjustable Width. IEEE Microwave and Wireless Components Letters, 2018, 28, 945-947.	2.0	15
4	Application of microwave heating in ceramic-based microfluidic module. Microelectronics International, 2018, 35, 126-132.	0.4	4
5	Numerical and experimental assessment of Vlasov antenna performance for high power microwave applications., 2018,,.		0
6	Circular antenna array based on small cavity-backed slot antennas for wireless battlefield sensor applications. , 2018, , .		0
7	Microfluidical Microwave Reactor for Synthesis of Gold Nanoparticles. Micromachines, 2017, 8, 318.	1.4	10
8	Dielectric characterization of selected LTCC materials for microwave applications. , 2017, , .		0
9	A LTCC microwave-microfluidic reactor. , 2016, , .		4
10	Analiza p \tilde{A}^3 l EM w falowodach cylindrycznych w stanie nieustalonym. Przeglad Elektrotechniczny, 2016, 1, 108-111.	0.1	0
11	Microfluidical Microwave Reactor for Accelerating Chemical Reactions. Procedia Engineering, 2015, 120, 683-686.	1.2	9
12	The convergence of modal series for waveguide Green functions in the analysis of shielded microwave structures by the SIE-MoM approach. , 2015, , .		0
13	Challenges of design and practical application of LTCC chip antennas. , 2015, , .		4
14	The SIE-MoM analysis of mixed vertical-horizontal metallization inside uniform waveguides and cavities. , $2014, \ldots$		1
15	Inaccuracies of the LTCC technology and their impact on the chip balun performance. , 2014, , .		2
16	Comment on †Compensate for the coupled radiation patterns of compact transmitting antenna arrays'. IET Microwaves, Antennas and Propagation, 2014, 8, 719-723.	0.7	1
17	A comparison of two practical methods for measurement of the dielectric constant of LTCC substrates. , 2014, , .		1
18	Influence of firing process quality on dielectric constant of microwave LTCC substrates. Microelectronics International, 2014, 31, 169-175.	0.4	10

#	Article	IF	CITATIONS
19	Improvement of the frequency bandwidth of LTCC meander antenna. , 2014, , .		2
20	Computational difficulties related to Green's functions for longitudinal current sources radiating inside waveguides and cavities. , 2013, , .		2
21	Mutual coupling modelling in presence of diffraction effects for different types of microstrip radiating elements., 2012,,.		O
22	Performance of a custom and a commercial mesh generator in the simulation of a microstrip circuit. , 2012, , .		0
23	Antenna array radiation pattern modeling which includes mutual coupling and diffraction effects. , 2012, , .		2
24	Simulation of a microstrip antenna using custom non-uniform triangular-rectangular meshes. , 2012, , .		0
25	Influence of the Aperture Edge Diffraction Effects on the Mutual Coupling Compensation Technique in Small Planar Antenna Arrays. International Journal of Electronics and Telecommunications, 2011, 57, 115-120.	0.5	3
26	Theoretical Models for UMTS Radio Networks. , 2006, , 115-175.		1
27	A miniaturized antenna for 2G/3G frequency-band applications. Microwave and Optical Technology Letters, 2006, 48, 399-402.	0.9	7
28	Green's functions for vertical current sources embedded in uniform waveguides or cavities filled with multilayered media. Microwave and Optical Technology Letters, 2002, 33, 186-191.	0.9	4
29	On the dyadic Green's function in the source region embedded in waveguides or cavities filled with a stratified medium. Microwave and Optical Technology Letters, 2002, 35, 93-97.	0.9	6