
Gabriele Bergers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8878248/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 2003, 3, 401-410.	12.8	3,059
2	Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer, 2008, 8, 592-603.	12.8	2,603
3	Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2000, 2, 737-744.	4.6	2,487
4	Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis. Cancer Cell, 2009, 15, 220-231.	7.7	2,168
5	MMP-9/Gelatinase B Is a Key Regulator of Growth Plate Angiogenesis and Apoptosis of Hypertrophic Chondrocytes. Cell, 1998, 93, 411-422.	13.5	1,639
6	Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 2005, 8, 299-309.	7.7	1,478
7	The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology, 2005, 7, 452-464.	0.6	1,252
8	Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 2003, 111, 1287-1295.	3.9	1,107
9	HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer Cell, 2008, 13, 206-220.	7.7	1,037
10	miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine, 2008, 6, 14.	2.3	819
11	Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. Journal of Clinical Investigation, 2000, 105, 1045-1047.	3.9	704
12	Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 2003, 111, 1287-1295.	3.9	560
13	Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Science Translational Medicine, 2017, 9, .	5.8	541
14	PDGFRÎ ² + perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature Cell Biology, 2005, 7, 870-879.	4.6	518
15	VEGF Inhibits Tumor Cell Invasion and Mesenchymal Transition through a MET/VEGFR2 Complex. Cancer Cell, 2012, 22, 21-35.	7.7	495
16	The metabolism of cancer cells during metastasis. Nature Reviews Cancer, 2021, 21, 162-180.	12.8	431
17	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
18	Functions of Paracrine PDGF Signaling in the Proangiogenic Tumor Stroma Revealed by Pharmacological Targeting, PLoS Medicine, 2008, 5, e19,	3.9	383

GABRIELE BERGERS

#	Article	IF	CITATIONS
19	The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell, 2003, 4, 133-146.	7.7	375
20	Glioblastoma: Defining Tumor Niches. Trends in Cancer, 2015, 1, 252-265.	3.8	326
21	Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell, 2003, 4, 393-403.	7.7	232
22	Non-Stem Cell Origin for Oligodendroglioma. Cancer Cell, 2010, 18, 669-682.	7.7	211
23	Asymmetry-Defective Oligodendrocyte Progenitors Are Glioma Precursors. Cancer Cell, 2011, 20, 328-340.	7.7	200
24	Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood, 2005, 105, 1094-1101.	0.6	181
25	Gene Expression Profile Identifies Tyrosine Kinase c-Met as a Targetable Mediator of Antiangiogenic Therapy Resistance. Clinical Cancer Research, 2013, 19, 1773-1783.	3.2	177
26	Tumor microenvironment and progression. Journal of Surgical Oncology, 2011, 103, 468-474.	0.8	149
27	Extrinsic regulators of epithelial tumor progression: metalloproteinases. Current Opinion in Genetics and Development, 2000, 10, 120-127.	1.5	140
28	Fyn and Src Are Effectors of Oncogenic Epidermal Growth Factor Receptor Signaling in Glioblastoma Patients. Cancer Research, 2009, 69, 6889-6898.	0.4	136
29	Intratumoral Myeloid Cells Regulate Responsiveness and Resistance to Antiangiogenic Therapy. Cell Reports, 2015, 11, 577-591.	2.9	136
30	Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends in Immunology, 2015, 36, 240-249.	2.9	122
31	The bone marrow constitutes a reservoir of pericyte progenitors. Journal of Leukocyte Biology, 2006, 80, 677-681.	1.5	119
32	Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncology, 2013, 2, 49-65.	1.2	116
33	Tumor angiogenesis, from foe to friend. Science, 2015, 349, 694-695.	6.0	104
34	A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nature Cell Biology, 2018, 20, 1203-1214.	4.6	103
35	Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro-Oncology, 2008, 10, 254-264.	0.6	94
36	Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules. Journal of Pathology, 2018, 245, 209-221.	2.1	70

GABRIELE BERGERS

#	Article	IF	CITATIONS
37	Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects. Expert Opinion on Therapeutic Targets, 2000, 4, 609-633.	1.0	67
38	Cross-activating c-Met/β1 integrin complex drives metastasis and invasive resistance in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8685-E8694.	3.3	60
39	Peptide-guided nanoparticles for glioblastoma targeting. Journal of Controlled Release, 2019, 308, 109-118.	4.8	60
40	Malignant Progression and Blockade of Angiogenesis in a Murine Transgenic Model of Neuroblastoma. Cancer Research, 2007, 67, 9435-9442.	0.4	58
41	The PTEN/Akt Pathway Dictates the Direct αVβ3-Dependent Growth-Inhibitory Action of an Active Fragment of Tumstatin in Glioma Cells In vitro and In vivo. Cancer Research, 2006, 66, 11331-11340.	0.4	57
42	The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Seminars in Cancer Biology, 2018, 52, 107-116.	4.3	57
43	Integrin β3 Overexpression Suppresses Tumor Growth in a Human Model of Gliomagenesis. Cancer Research, 2004, 64, 2751-2758.	0.4	55
44	Novel Target for Peptide-Based Imaging and Treatment of Brain Tumors. Molecular Cancer Therapeutics, 2014, 13, 996-1007.	1.9	54
45	Tumors vs. Chronic Wounds: An Immune Cell's Perspective. Frontiers in Immunology, 2019, 10, 2178.	2.2	52
46	Regulation of Blood and Lymphatic Vessels by Immune Cells in Tumors and Metastasis. Annual Review of Physiology, 2019, 81, 535-560.	5.6	44
47	Location, Location, Location: Macrophage Positioning within Tumors Determines Pro- or Antitumor Activity. Cancer Cell, 2013, 24, 687-689.	7.7	43
48	Glioblastoma: To Target the Tumor Cell or the Microenvironment?. , 0, , 315-340.		31
49	Inhibitors of growth factor receptors, signaling pathways and angiogenesis as therapeutic molecular agents. Cancer and Metastasis Reviews, 2006, 25, 243-252.	2.7	26
50	High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Frontiers in Immunology, 2021, 12, 736670.	2.2	26
51	HRâ€MAS MRS of the pancreas reveals reduced lipid and elevated lactate and taurine associated with early pancreatic cancer. NMR in Biomedicine, 2014, 27, 1361-1370.	1.6	24
52	Targeting vascular sprouts. Science, 2014, 344, 1449-1450.	6.0	23
53	Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nature Communications, 2022, 13, 2760.	5.8	19
54	Escape Mechanisms from Antiangiogenic Therapy: An Immune Cell's Perspective. Advances in Experimental Medicine and Biology, 2014, 772, 83-99.	0.8	11

GABRIELE BERGERS

#	Article	IF	CITATIONS
55	Cell factories for fighting cancer. Nature Biotechnology, 2001, 19, 20-21.	9.4	10
56	Therapeutic induction of high endothelial venules (HEVs) to enhance T-cell infiltration in tumors. Oncotarget, 2017, 8, 99207-99208.	0.8	9
57	LGL1 binds to Integrin β1 and inhibits downstream signaling to promote epithelial branching in the mammary gland. Cell Reports, 2022, 38, 110375.	2.9	6
58	Trimming the Vascular Tree in Tumors: Metabolic and Immune Adaptations. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 21-29.	2.0	5
59	Where Have All the T Cells Gone?. Immunity, 2018, 49, 592-594.	6.6	4
60	Bone Marrow-Derived Cells in GBM Neovascularization. , 2009, , 749-773.		4
61	Chapter 3 Bone Marrow–Derived Vascular Progenitors and Proangiogenic Monocytes in Tumors. Methods in Enzymology, 2008, 445, 53-82.	0.4	3
62	Pericytes, the Mural Cells of the Microvascular System. , 2008, , 45-53.		3
63	HIFα induces the recruitment of bone marrowâ€derived vascular modulatory cells to regulate tumor angiogenesis. FASEB Journal, 2008, 22, 88.2.	0.2	0