
H Jane Dyson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivalency enables unidirectional switch-like competition between intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
2	Interactions of a Long Noncoding RNA with Domains of NF-κB and lκBα: Implications for the Inhibition of Non-Signal-Related Phosphorylation. Biochemistry, 2022, 61, 367-376.	1.2	4
3	A transthyretin monomer intermediate undergoes local unfolding and transient interaction with oligomers in a kinetically concerted aggregation pathway. Journal of Biological Chemistry, 2022, 298, 102162.	1.6	5
4	Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion. Biophysical Journal, 2021, 120, 296-305.	0.2	4
5	Backbone and side-chain chemical shift assignments of p50 subunit of NF-κB transcription factor. Biomolecular NMR Assignments, 2021, 15, 29-33.	0.4	2
6	Using NMR to identify binding regions for N and C-terminal Hsp90 inhibitors using Hsp90 domains. RSC Medicinal Chemistry, 2021, 12, 410-415.	1.7	4
7	Thermodynamic Stability and Aggregation Kinetics of EF Helix and EF Loop Variants of Transthyretin. Biochemistry, 2021, 60, 756-764.	1.2	14
8	Early Strides in NMR Dynamics Measurements. Biochemistry, 2021, 60, 3452-3454.	1.2	0
9	Diversity at BJ: The editors, the reviewers, theÂauthors. Biophysical Journal, 2021, 120, E1-E2.	0.2	Ο
10	Role of Active Site Loop Dynamics in Mediating Ligand Release from <i>E. coli</i> Dihydrofolate Reductase. Biochemistry, 2021, 60, 2663-2671.	1.2	4
11	The molecular basis of allostery in a facilitated dissociation process. Structure, 2021, 29, 1327-1338.e5.	1.6	6
12	NMR illuminates intrinsic disorder. Current Opinion in Structural Biology, 2021, 70, 44-52.	2.6	60
13	More pandemic reflections. Biophysical Journal, 2021, 120, E1-E2.	0.2	Ο
14	A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
15	Characterization of the High-Affinity Fuzzy Complex between the Disordered Domain of the E7 Oncoprotein from High-Risk HPV and the TAZ2 Domain of CBP. Biochemistry, 2021, 60, 3887-3898.	1.2	9
16	Reflections on the Pandemic. Biophysical Journal, 2020, 119, E1.	0.2	0
17	RNA Binding by the KTS Splice Variants of Wilms' Tumor Suppressor Protein WT1. Biochemistry, 2020, 59, 3889-3901.	1.2	4
18	A Conformational Switch in the Zinc Finger Protein Kaiso Mediates Differential Readout of Specific and Methylated DNA Sequences. Biochemistry, 2020, 59, 1909-1926.	1.2	7

#	Article	IF	CITATIONS
19	Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Cell Chemical Biology, 2020, 27, 292-305.e6.	2.5	13
20	Editors' Note. Biophysical Journal, 2020, 119, E1.	0.2	0
21	Comparison of backbone dynamics of the p50 dimerization domain of NFκB in the homodimeric transcription factor NFκB1 and in its heterodimeric complex with RelA (p65). Protein Science, 2019, 28, 2064-2072.	3.1	7
22	Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. Journal of Biomolecular NMR, 2019, 73, 651-659.	1.6	48
23	Aggregation of zincâ€free p53 is inhibited by Hsp90 but not other chaperones. Protein Science, 2019, 28, 2020-2023.	3.1	7
24	Economics and Politics of Publishing in Our Mission-Driven Society. Biophysical Journal, 2019, 116, E1-E2.	0.2	0
25	A Journal for All Biophysics. Biophysical Journal, 2019, 116, E1.	0.2	0
26	Role of Backbone Dynamics in Modulating the Interactions of Disordered Ligands with the TAZ1 Domain of the CREB-Binding Protein. Biochemistry, 2019, 58, 1354-1362.	1.2	33
27	A Dynamic Switch in Inactive p38Î ³ Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry, 2019, 58, 5160-5172.	1.2	7
28	Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. Journal of Molecular Biology, 2018, 430, 2309-2320.	2.0	105
29	Slow Dynamics of Tryptophan–Water Networks in Proteins. Journal of the American Chemical Society, 2018, 140, 675-682.	6.6	26
30	Characterization of an Hsp90-Independent Interaction between Co-Chaperone p23 and Transcription Factor p53. Biochemistry, 2018, 57, 935-944.	1.2	13
31	Is the BJ Review Process Gender-Biased?. Biophysical Journal, 2018, 114, E1.	0.2	0
32	CH···O Hydrogen Bonds Mediate Highly Specific Recognition of Methylated CpG Sites by the Zinc Finger Protein Kaiso. Biochemistry, 2018, 57, 2109-2120.	1.2	19
33	Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11302-E11310.	3.3	93
34	Mispacking of the Phe87 Side Chain Reduces the Kinetic Stability of Human Transthyretin. Biochemistry, 2018, 57, 6919-6922.	1.2	8
35	Structural Basis for Graded Inhibition of CREB:DNA Interactions by Multisite Phosphorylation. Biochemistry, 2018, 57, 6964-6972.	1.2	7
36	Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10040-10045.	3.3	18

#	Article	IF	CITATIONS
37	How Do Intrinsically Disordered Viral Proteins Hijack the Cell?. Biochemistry, 2018, 57, 4045-4046.	1.2	22
38	NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations. Biochemistry, 2018, 57, 4421-4430.	1.2	30
39	Kinetic analysis of the multistep aggregation pathway of human transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6201-E6208.	3.3	29
40	Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature, 2017, 543, 447-451.	13.7	140
41	Functional importance of stripping in NFκB signaling revealed by a stripping-impaired lκBα mutant. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1916-1921.	3.3	32
42	Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5335-E5342.	3.3	56
43	How Does Your Protein Fold? Elucidating the Apomyoglobin Folding Pathway. Accounts of Chemical Research, 2017, 50, 105-111.	7.6	44
44	Fluorotryptophan Incorporation Modulates the Structure and Stability of Transthyretin in a Site-Specific Manner. Biochemistry, 2017, 56, 5570-5581.	1.2	20
45	Defining the Structural Basis for Allosteric Product Release from <i>E. coli</i> Dihydrofolate Reductase Using NMR Relaxation Dispersion. Journal of the American Chemical Society, 2017, 139, 11233-11240.	6.6	27
46	Structural Basis for Interaction of the Tandem Zinc Finger Domains of Human Muscleblind with Cognate RNA from Human Cardiac Troponin T. Biochemistry, 2017, 56, 4154-4168.	1.2	27
47	Greetings from Your New Editor-in-Chief. Biophysical Journal, 2017, 113, E1.	0.2	0
48	Finding Our Way in the Dark Proteome. Journal of the American Chemical Society, 2016, 138, 9730-9742.	6.6	111
49	Structural characterization of the ternary complex that mediates termination of NF-κB signaling by lκBα. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6212-6217.	3.3	8
50	Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP. Protein Science, 2016, 25, 2256-2267.	3.1	18
51	<scp>NMR</scp> characterization of a 72 k <scp>D</scp> a transcription factor using differential isotopic labeling. Protein Science, 2016, 25, 597-604.	3.1	8
52	The Dependence of Carbohydrate–Aromatic Interaction Strengths on the Structure of the Carbohydrate. Journal of the American Chemical Society, 2016, 138, 7636-7648.	6.6	44
53	Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1853-62.	3.3	94
54	Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. Journal of Biological Chemistry, 2016, 291, 6714-6722.	1.6	251

#	Article	IF	CITATIONS
55	Making Sense of Intrinsically Disordered Proteins. Biophysical Journal, 2016, 110, 1013-1016.	0.2	81
56	Classic Analysis of Biopolymer Dynamics Is Model Free. Biophysical Journal, 2016, 110, 3-6.	0.2	4
57	Functional advantages of dynamic protein disorder. FEBS Letters, 2015, 589, 2433-2440.	1.3	162
58	Cofactor-Mediated Conformational Dynamics Promote Product Release From <i>Escherichia coli</i> Dihydrofolate Reductase via an Allosteric Pathway. Journal of the American Chemical Society, 2015, 137, 9459-9468.	6.6	45
59	Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9614-9619.	3.3	222
60	Biomolecular Systems Interactions, Dynamics, and Allostery: Reflections and New Directions. Biophysical Journal, 2015, 109, E01-E02.	0.2	0
61	Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology, 2015, 16, 18-29.	16.1	1,849
62	The High-Risk HPV16 E7 Oncoprotein Mediates Interaction between the Transcriptional Coactivator CBP and the Retinoblastoma Protein pRb. Journal of Molecular Biology, 2014, 426, 4030-4048.	2.0	61
63	Side Chain Conformational Averaging in Human Dihydrofolate Reductase. Biochemistry, 2014, 53, 1134-1145.	1.2	8
64	Probing the Non-Native H Helix Translocation in Apomyoglobin Folding Intermediates. Biochemistry, 2014, 53, 3767-3780.	1.2	16
65	Structural Characterization of Interactions between the Double-Stranded RNA-Binding Zinc Finger Protein JAZ and Nucleic Acids. Biochemistry, 2014, 53, 1495-1510.	1.2	20
66	The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Letters, 2013, 587, 2506-2511.	1.3	12
67	Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nature Structural and Molecular Biology, 2013, 20, 1243-1249.	3.6	153
68	Localized Structural Fluctuations Promote Amyloidogenic Conformations in Transthyretin. Journal of Molecular Biology, 2013, 425, 977-988.	2.0	65
69	Long-Range Effects and Functional Consequences of Stabilizing Mutations in the Ankyrin Repeat Domain of ll̂ºBα. Journal of Molecular Biology, 2013, 425, 902-913.	2.0	10
70	A Distal Mutation Perturbs Dynamic Amino Acid Networks in Dihydrofolate Reductase. Biochemistry, 2013, 52, 4605-4619.	1.2	77
71	Structural and Energetic Basis of Carbohydrate–Aromatic Packing Interactions in Proteins. Journal of the American Chemical Society, 2013, 135, 9877-9884.	6.6	85
72	Side-Chain Conformational Heterogeneity of Intermediates in the <i>Escherichia coli</i> Dihydrofolate Reductase Catalytic Cycle. Biochemistry, 2013, 52, 3464-3477.	1.2	16

#	Article	IF	CITATIONS
73	What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 2013, 1, e24157.	1.9	226
74	Identification of Cys255 in HIFâ€1α as a novel site for development of covalent inhibitors of HIFâ€1α/ARNT PasB domain protein–protein interaction. Protein Science, 2012, 21, 1885-1896.	3.1	64
75	CheShift-2 resolves a local inconsistency between two X-ray crystal structures. Journal of Biomolecular NMR, 2012, 54, 193-198.	1.6	4
76	Homodimerization of the PAS-B Domains of Hypoxia-Inducible Factors. Journal of Physical Chemistry B, 2012, 116, 6960-6965.	1.2	5
77	Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15229-15234.	3.3	101
78	Roles of intrinsic disorder in protein–nucleic acid interactions. Molecular BioSystems, 2012, 8, 97-104.	2.9	76
79	Role of disorder in lκB–NFκB interaction. IUBMB Life, 2012, 64, 499-505.	1.5	41
80	Kaiso uses all three zinc fingers and adjacent sequence motifs for high affinity binding to sequenceâ€specific and methyl pG DNA targets. FEBS Letters, 2012, 586, 734-739.	1.3	17
81	Structural Basis for Cooperative Transcription Factor Binding to the CBP Coactivator. FASEB Journal, 2012, 26, lb266.	0.2	0
82	A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis. Science, 2011, 332, 234-238.	6.0	414
83	Expanding the proteome: disordered and alternatively folded proteins. Quarterly Reviews of Biophysics, 2011, 44, 467-518.	2.4	150
84	The RelA Nuclear Localization Signal Folds upon Binding to lκBα. Journal of Molecular Biology, 2011, 405, 754-764.	2.0	29
85	Consequences of Stabilizing the Natively Disordered F Helix for the Folding Pathway of Apomyoglobin. Journal of Molecular Biology, 2011, 411, 248-263.	2.0	16
86	Dynamic Interaction of Hsp90 with Its Client Protein p53. Journal of Molecular Biology, 2011, 411, 158-173.	2.0	72
87	The client protein p53 adopts a molten globule–like state in the presence of Hsp90. Nature Structural and Molecular Biology, 2011, 18, 537-541.	3.6	121
88	Detection of a ternary complex of NF-κB and IκBα with DNA provides insights into how IκBα removes NF-κB from transcription sites. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1367-1372.	3.3	26
89	Leu628 of the KIX domain of CBP is a key residue for the interaction with the MLL transactivation domain. FEBS Letters, 2010, 584, 4500-4504.	1.3	32
	3PO40 Mapping the Interactions of the Intrinsically Disordered p53 Transactivation Subdomains with		

3P040 Mapping the Interactions of the Intrinsically Disordered p53 Transactivation Subdomains with the TAZ2 Domain of CBP by NMR(Protein: Structure & Function,The 48th Annual Meeting of the) Tj ETQq0 0 0 rgBT0/Overloclo10 Tf 50 5

#	Article	IF	CITATIONS
91	Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1373-1378.	3.3	133
92	Structure of the p53 Transactivation Domain in Complex with the Nuclear Receptor Coactivator Binding Domain of CREB Binding Protein. Biochemistry, 2010, 49, 9964-9971.	1.2	162
93	Energetic Frustration of Apomyoglobin Folding: Role of the B Helix. Journal of Molecular Biology, 2010, 396, 1319-1328.	2.0	17
94	Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6591-6596.	3.3	197
95	Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13260-13265.	3.3	119
96	Evaluating β-turn mimics as β-sheet folding nucleators. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11067-11072.	3.3	97
97	Linking folding and binding. Current Opinion in Structural Biology, 2009, 19, 31-38.	2.6	932
98	Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes. Protein Science, 2009, 12, 2230-2238.	3.1	38
99	Mapping the Interactions of the p53 Transactivation Domain with the KIX Domain of CBP. Biochemistry, 2009, 48, 2115-2124.	1.2	109
100	Prion Proteins with Pathogenic and Protective Mutations Show Similar Structure and Dynamics. Biochemistry, 2009, 48, 8120-8128.	1.2	53
101	Interaction of the lκBα C-terminal PEST Sequence with NF-κB: Insights into the Inhibition of NF-κB DNA Binding by lκBα. Journal of Molecular Biology, 2009, 388, 824-838.	2.0	28
102	Functional Dynamics of the Folded Ankyrin Repeats of lκBα Revealed by Nuclear Magnetic Resonance. Biochemistry, 2009, 48, 8023-8031.	1.2	22
103	Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO Journal, 2009, 28, 948-958.	3.5	147
104	Prediction of the Rotational Tumbling Time for Proteins with Disordered Segments. Journal of the American Chemical Society, 2009, 131, 6814-6821.	6.6	48
105	Structure discrimination for the C-terminal domain of Escherichia coli trigger factor in solution. Journal of Biomolecular NMR, 2008, 40, 23-30.	1.6	17
106	Structural characterization of partially folded intermediates of apomyoglobin H64F. Protein Science, 2008, 17, 313-321.	3.1	16
107	Hydrogen–deuterium exchange strategy for delineation of contact sites in protein complexes. FEBS Letters, 2008, 582, 1495-1500.	1.3	16
108	The Kinetic and Equilibrium Molten Globule Intermediates of Apoleghemoglobin Differ in Structure. Journal of Molecular Biology, 2008, 378, 715-725.	2.0	26

#	Article	IF	CITATIONS
109	Transfer of Flexibility between Ankyrin Repeats in lκBα upon Formation of the NF-κB Complex. Journal of Molecular Biology, 2008, 380, 917-931.	2.0	61
110	Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13859-13864.	3.3	89
111	Amylin Proprotein Processing Generates Progressively More Amyloidogenic Peptides that Initially Sample the Helical State. Biochemistry, 2008, 47, 9900-9910.	1.2	132
112	NMR Relaxation Study of the Complex Formed Between CBP and the Activation Domain of the Nuclear Hormone Receptor Coactivator ACTR ^{â€} . Biochemistry, 2008, 47, 1299-1308.	1.2	86
113	The Intrinsically Disordered RNR Inhibitor Sml1 Is a Dynamic Dimer. Biochemistry, 2008, 47, 13428-13437.	1.2	53
114	Conformational Relaxation following Hydride Transfer Plays a Limiting Role in Dihydrofolate Reductase Catalysisâ€. Biochemistry, 2008, 47, 9227-9233.	1.2	53
115	Modeling transient collapsed states of an unfolded protein to provide insights into early folding events. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6278-6283.	3.3	105
116	Embryonic Neural Inducing Factor Churchill Is not a DNA-binding Zinc Finger Protein: Solution Structure Reveals a Solvent-exposed β-Sheet and Zinc Binuclear Cluster. Journal of Molecular Biology, 2007, 371, 1274-1289.	2.0	21
117	Structure of the Wilms Tumor Suppressor Protein Zinc Finger Domain Bound to DNA. Journal of Molecular Biology, 2007, 372, 1227-1245.	2.0	91
118	Tailoring Relaxation Dispersion Experiments for Fast-Associating Protein Complexes. Journal of the American Chemical Society, 2007, 129, 13406-13407.	6.6	52
119	NMR detection of adventitious xylose binding to the quorum-sensing protein SdiA of Escherichia coli. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6202-6205.	1.0	7
120	Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature, 2007, 447, 1021-1025.	13.7	984
121	Dynamics of IkBa Probed by NMR. FASEB Journal, 2007, 21, A655.	0.2	0
122	The Dynamic Energy Landscape of Dihydrofolate Reductase Catalysis. Science, 2006, 313, 1638-1642.	6.0	877
123	An NMR Perspective on Enzyme Dynamics. Chemical Reviews, 2006, 106, 3055-3079.	23.0	424
124	NMR Solution Structure of the Peptide Fragment 1â^'30, Derived from Unprocessed Mouse Doppel Protein, in DHPC Micellesâ€. Biochemistry, 2006, 45, 159-166.	1.2	19
125	The Reduced, Denatured Somatomedin B Domain of Vitronectin Refolds into a Stable, Biologically Active Molecule. Biochemistry, 2006, 45, 3297-3306.	1.2	11
126	Structural Basis for Cooperative Transcription Factor Binding to the CBP Coactivator. Journal of Molecular Biology, 2006, 355, 1005-1013.	2.0	166

#	Article	IF	CITATIONS
127	Structure of the Escherichia coli Quorum Sensing Protein SdiA: Activation of the Folding Switch by Acyl Homoserine Lactones. Journal of Molecular Biology, 2006, 355, 262-273.	2.0	162
128	Identification of Native and Non-native Structure in Kinetic Folding Intermediates of Apomyoglobin. Journal of Molecular Biology, 2006, 355, 139-156.	2.0	112
129	Induced Fit and "Lock and Key―Recognition of 5S RNA by Zinc Fingers of Transcription Factor IIIA. Journal of Molecular Biology, 2006, 357, 275-291.	2.0	72
130	Solution Structure of the Hdm2 C2H2C4 RING, a Domain Critical for Ubiquitination of p53. Journal of Molecular Biology, 2006, 363, 433-450.	2.0	120
131	According to current textbooks, a well-defined three-dimensional structure is a prerequisite for the function of a protein. Is this correct?. IUBMB Life, 2006, 58, 107-109.	1.5	20
132	The role of hydrophobic interactions in initiation and propagation of protein folding. Proceedings of the United States of America, 2006, 103, 13057-13061.	3.3	266
133	Localization of Sites of Interaction between p23 and Hsp90 in Solution. Journal of Biological Chemistry, 2006, 281, 14457-14464.	1.6	58
134	Structure and Function of the CBP/p300 TAZ Domains. , 2005, , 114-120.		4
135	Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 2005, 6, 197-208.	16.1	3,403
136	Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling. Journal of Biomolecular NMR, 2005, 31, 59-64.	1.6	36
137	Letter to the Editor: Backbone and side chain 1H, 13C and 15N assignments for Escherichia coli SdiA1-171, the autoinducer-binding domain of a quorum sensing protein. Journal of Biomolecular NMR, 2005, 31, 373-374.	1.6	7
138	Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. Proceedings of the United States of America, 2005, 102, 5032-5037.	3.3	152
139	Enhanced picture of protein-folding intermediates using organic solvents in H/D exchange and quench-flow experiments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4765-4770.	3.3	62
140	CBP/p300 TAZ1 Domain Forms a Structured Scaffold for Ligand Binding,. Biochemistry, 2005, 44, 490-497.	1.2	76
141	Solution Structure of the N-terminal Zinc Fingers of the Xenopus laevis double-stranded RNA-binding Protein ZFa. Journal of Molecular Biology, 2005, 351, 718-730.	2.0	18
142	Sequence Determinants of a Protein Folding Pathway. Journal of Molecular Biology, 2005, 351, 383-392.	2.0	54
143	Elucidation of the Protein Folding Landscape by NMR. Methods in Enzymology, 2005, 394, 299-321.	0.4	90
144	Interaction of the TAZ1 Domain of the CREB-Binding Protein with the Activation Domain of CITED2. Journal of Biological Chemistry, 2004, 279, 3042-3049.	1.6	97

#	Article	IF	CITATIONS
145	Activation of the Redox-regulated Chaperone Hsp33 by Domain Unfolding. Journal of Biological Chemistry, 2004, 279, 20529-20538.	1.6	100
146	Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nature Structural and Molecular Biology, 2004, 11, 257-264.	3.6	320
147	Unfolded Proteins and Protein Folding Studied by NMR. ChemInform, 2004, 35, no.	0.1	1
148	Disulfide Bonding Arrangements in Active Forms of the Somatomedin B Domain of Human Vitronectinâ€. Biochemistry, 2004, 43, 6519-6534.	1.2	37
149	The LEF-1 High-Mobility Group Domain Undergoes a Disorder-to-Order Transition upon Formation of a Complex with Cognate DNAâ€. Biochemistry, 2004, 43, 8725-8734.	1.2	62
150	Effect of Cofactor Binding and Loop Conformation on Side Chain Methyl Dynamics in Dihydrofolate Reductase. Biochemistry, 2004, 43, 374-383.	1.2	73
151	Conformational Changes in the Active Site Loops of Dihydrofolate Reductase during the Catalytic Cycleâ€. Biochemistry, 2004, 43, 16046-16055.	1.2	119
152	Unfolded Proteins and Protein Folding Studied by NMR. Chemical Reviews, 2004, 104, 3607-3622.	23.0	596
153	Packing, specificity, and mutability at the binding interface between the p160 coactivator and CREB-binding protein. Protein Science, 2004, 13, 203-210.	3.1	66
154	Introduction:  Biological Nuclear Magnetic Resonance. Chemical Reviews, 2004, 104, 3517-3518.	23.0	2
155	Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of c-Myb. Journal of Molecular Biology, 2004, 337, 521-534.	2.0	181
156	Structural Characterization of Unfolded States of Apomyoglobin using Residual Dipolar Couplings. Journal of Molecular Biology, 2004, 340, 1131-1142.	2.0	165
157	The Zinc-dependent Redox Switch Domain of the Chaperone Hsp33 has a Novel Fold. Journal of Molecular Biology, 2004, 341, 893-899.	2.0	52
158	ZZ Domain of CBP: an Unusual Zinc Finger Fold in a Protein Interaction Module. Journal of Molecular Biology, 2004, 343, 1081-1093.	2.0	81
159	Structure, Dynamics, and Catalytic Function of Dihydrofolate Reductase. Annual Review of Biophysics and Biomolecular Structure, 2004, 33, 119-140.	18.3	444
160	The CBP/p300 TAZ1 domain in its native state is not a binding partner of MDM2. Biochemical Journal, 2004, 381, 685-691.	1.7	41
161	Changes in structure and dynamics of the Fv fragment of a catalytic antibody upon binding of inhibitor. Protein Science, 2003, 12, 1386-1394.	3.1	14
162	Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-β-lactamase. Protein Science, 2003, 12, 1368-1375.	3.1	56

#	Article	IF	CITATIONS
163	Structure of the Nuclear Factor ALY:  Insights into Post-Transcriptional Regulatory and mRNA Nuclear Export Processes. Biochemistry, 2003, 42, 7348-7357.	1.2	20
164	Role of the B Helix in Early Folding Events in Apomyoglobin: Evidence from Site-directed Mutagenesis for Native-like Long Range Interactions. Journal of Molecular Biology, 2003, 334, 293-307.	2.0	51
165	Monomeric Complex of Human Orphan Estrogen Related Receptor-2 with DNA: A Pseudo-dimer Interface Mediates Extended Half-site Recognition. Journal of Molecular Biology, 2003, 327, 819-832.	2.0	97
166	Folding of a Î ² -sheet Protein Monitored by Real-time NMR Spectroscopy. Journal of Molecular Biology, 2003, 328, 1161-1171.	2.0	29
167	Roles of Phosphorylation and Helix Propensity in the Binding of the KIX Domain of CREB-binding Protein by Constitutive (c-Myb) and Inducible (CREB) Activators. Journal of Biological Chemistry, 2002, 277, 42241-42248.	1.6	134
168	Structural basis for Hif-1Â/CBP recognition in the cellular hypoxic response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5271-5276.	3.3	376
169	Molecular Hinges in Protein Folding: the Urea-Denatured State of Apomyoglobinâ€. Biochemistry, 2002, 41, 12681-12686.	1.2	130
170	Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Advances in Protein Chemistry, 2002, 62, 311-340.	4.4	208
171	The Apomyoglobin Folding Pathway Revisited: Structural Heterogeneity in the Kinetic Burst Phase Intermediate. Journal of Molecular Biology, 2002, 322, 483-489.	2.0	89
172	Cooperativity in Transcription Factor Binding to the Coactivator CREB-binding Protein (CBP). Journal of Biological Chemistry, 2002, 277, 43168-43174.	1.6	166
173	Mapping Long-range Contacts in a Highly Unfolded Protein. Journal of Molecular Biology, 2002, 322, 655-662.	2.0	140
174	Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology, 2002, 12, 54-60.	2.6	1,223
175	Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature, 2002, 415, 549-553.	13.7	423
176	Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water. Journal of Biomolecular NMR, 2002, 22, 317-331.	1.6	112
177	Assignment of a 15 kDa protein complex formed between the p160 coactivator ACTR and CREB binding protein. Journal of Biomolecular NMR, 2002, 22, 377-378.	1.6	6
178	Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions. Protein Science, 2001, 10, 1056-1066.	3.1	79
179	NMR Structural and Dynamic Characterization of the Acid-Unfolded State of Apomyoglobin Provides Insights into the Early Events in Protein Foldingâ€,‡. Biochemistry, 2001, 40, 3561-3571.	1.2	212
180	Backbone Dynamics in Dihydrofolate Reductase Complexes:Â Role of Loop Flexibility in the Catalytic Mechanismâ€. Biochemistry, 2001, 40, 9846-9859.	1.2	246

#	Article	IF	CITATIONS
181	Nuclear Magnetic Resonance Methods for Elucidation of Structure and Dynamics in Disordered States. Methods in Enzymology, 2001, 339, 258-270.	0.4	148
182	Sequence-Dependent Correction of Random Coil NMR Chemical Shifts. Journal of the American Chemical Society, 2001, 123, 2970-2978.	6.6	562
183	Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases. Journal of Molecular Biology, 2001, 310, 907-918.	2.0	71
184	Solution structure of the third immunoglobulin domain of the neural cell adhesion molecule N-CAM: can solution studies define the mechanism of homophilic binding?. Journal of Molecular Biology, 2001, 311, 161-172.	2.0	25
185	Conformational and Dynamic Characterization of the Molten Globule State of an Apomyoglobin Mutant with an Altered Folding Pathwayâ€. Biochemistry, 2001, 40, 14459-14467.	1.2	45
186	Local Structural Plasticity of the Prion Protein. Analysis of NMR Relaxation Dynamicsâ€. Biochemistry, 2001, 40, 2743-2753.	1.2	171
187	SANE (Structure Assisted NOE Evaluation): an automated model-based approach for NOE assignment. Journal of Biomolecular NMR, 2001, 19, 321-329.	1.6	113
188	Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods. Journal of Biomolecular NMR, 2001, 21, 1-9.	1.6	44
189	Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight?. Protein Science, 2001, 10, 1005-1014.	3.1	68
190	Two different neurodegenerative diseases caused by proteins with similar structures. Proceedings of the United States of America, 2001, 98, 2352-2357.	3.3	147
191	Conservation of folding pathways in evolutionarily distant globin sequences. Nature Structural Biology, 2000, 7, 679-686.	9.7	95
192	Backbone H(N), N, Calpha, C' and Cbeta assignments of the 19 kDa DHFR/NADPH complex at 9 degrees C and pH 7.6. Journal of Biomolecular NMR, 2000, 16, 349-350.	1.6	3
193	Assignment of 1H, 13C and 15N resonances of the I-domain of human leukocyte function associated antigen-1. Journal of Biomolecular NMR, 2000, 16, 271-272.	1.6	7
194	Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView. Journal of Biomolecular NMR, 2000, 18, 43-48.	1.6	272
195	Molecular basis for modulation of biological function by alternate splicing of the Wilms' tumor suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11932-11935.	3.3	115
196	DNA-induced α-helix capping in conserved linker sequences is a determinant of binding affinity in Cys2-His2 zinc fingers. Journal of Molecular Biology, 2000, 295, 719-727.	2.0	137
197	NMR solution structure of the inserted domain of human leukocyte function associated antigen-1. Journal of Molecular Biology, 2000, 295, 1251-1264.	2.0	74
198	Solution Structure of the Cysteine-rich Domain of the Escherichia coli Chaperone Protein DnaJ. Journal of Molecular Biology, 2000, 300, 805-818.	2.0	121

#	Article	IF	CITATIONS
199	Efficient Inhibition of Escherichia Coli RNA Polymerase by the Bacteriophage T4 AsiA Protein Requires that AsiA Binds First to Free σ70. Journal of Molecular Biology, 2000, 304, 731-739.	2.0	55
200	Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. Journal of Molecular Biology, 2000, 303, 243-253.	2.0	121
201	Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. Journal of Molecular Biology, 2000, 304, 355-370.	2.0	141
202	Identification of the regions involved in DNA binding by the mouse PEBP2α protein. FEBS Letters, 2000, 470, 125-130.	1.3	15
203	Dynamics of the Metallo-β-Lactamase from Bacteroides fragilis in the Presence and Absence of a Tight-Binding Inhibitor. Biochemistry, 2000, 39, 13356-13364.	1.2	59
204	Alternative Splicing of Wilms' Tumor Suppressor Protein Modulates DNA Binding Activity through Isoform-Specific DNA-Induced Conformational Changesâ€. Biochemistry, 2000, 39, 5341-5348.	1.2	58
205	Changes in the Apomyoglobin Folding Pathway Caused by Mutation of the Distal Histidine Residue. Biochemistry, 2000, 39, 11227-11237.	1.2	68
206	Native and Non-native Secondary Structure and Dynamics in the pH 4 Intermediate of Apomyoglobinâ€. Biochemistry, 2000, 39, 2894-2901.	1.2	121
207	Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from ¹⁵ Nâ€ ¹ H NMR spectra. Protein Science, 2000, 9, 186-193.	3.1	23
208	Copper binding to the prion protein: Structural implications of four identical cooperative binding sites. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2042-2047.	3.3	520
209	Characterization of monomeric and dimeric B domain of Staphylococcal protein A. Chemical Biology and Drug Design, 1999, 54, 344-352.	1.2	5
210	Inherent flexibility in a potent inhibitor of blood coagulation, recombinant nematode anticoagulant protein c2. FEBS Journal, 1999, 265, 539-548.	0.2	42
211	Backbone resonance assignments for the Fv fragment of the catalytic antibody NPN43C9 with bound p-nitrophenol. Journal of Biomolecular NMR, 1999, 15, 83-84.	1.6	4
212	Improved low pH bicelle system for orienting macromolecules over a wide temperature range. Journal of Biomolecular NMR, 1999, 13, 387-391.	1.6	84
213	Assignment of 1H, 13C, and 15N resonances of reduced Escherichia coli glutaredoxin 2. Journal of Biomolecular NMR, 1999, 14, 197-198.	1.6	3
214	Association between the first two immunoglobulin-like domains of the neural cell adhesion molecule N-CAM. FEBS Letters, 1999, 451, 162-168.	1.3	30
215	NMR Characterization of the Metallo-β-lactamase from Bacteroides fragilis and Its Interaction with a Tight-Binding Inhibitor:  Role of an Active-Site Loop. Biochemistry, 1999, 38, 14507-14514.	1.2	104
216	Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin 1 1Edited by F. Cohen. Journal of Molecular Biology, 1999, 285, 269-282.	2.0	79

#	Article	IF	CITATIONS
217	Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains. Journal of Molecular Biology, 1999, 287, 859-865.	2.0	68
218	Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 1999, 293, 321-331.	2.0	2,668
219	Quenchâ€flow experiments combined with mass spectrometry show apomyoglobin folds through an obligatory intermediate. Protein Science, 1999, 8, 45-49.	3.1	93
220	A NOESY-HSQC simulation program, SPIRIT. Journal of Biomolecular NMR, 1998, 11, 17-29.	1.6	17
221	1H, 13C and 15N NMR backbone assignments of 25.5 kDa metallo-beta-lactamase from Bacteroides fragilis. Journal of Biomolecular NMR, 1998, 12, 201-202.	1.6	5
222	Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nature Structural Biology, 1998, 18, 148-155.	9.7	344
223	Equilibrium NMR studies of unfolded and partially folded proteins. Nature Structural Biology, 1998, 5, 499-503.	9.7	187
224	Sequence requirements for stabilization of a peptide reverse turn in water solution. Proline is not essential for stability. FEBS Journal, 1998, 255, 462-471.	0.2	25
225	NMR characterization of a single-cysteine mutant of Escherichia coli thioredoxin and a covalent thioredoxin-peptide complex. FEBS Journal, 1998, 257, 299-308.	0.2	14
226	The identification of metalâ€binding ligand residues in metalloproteins using nuclear magnetic resonance spectroscopy. Protein Science, 1998, 7, 2476-2479.	3.1	6
227	Conformational preferences in the Ser133 -phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Letters, 1998, 430, 317-322.	1.3	137
228	Calculations of Electrostatic Interactions and pKas in the Active Site of Escherichia coli Thioredoxin,. Biochemistry, 1998, 37, 10298-10306.	1.2	82
229	Glycosylation of Threonine of the Repeating Unit of RNA Polymerase II with β-LinkedN-Acetylglucosame Leads to a Turnlike Structure. Journal of the American Chemical Society, 1998, 120, 11567-11575.	6.6	73
230	High-resolution solution structure of the retinoid X receptor DNA-binding domain. Journal of Molecular Biology, 1998, 281, 271-284.	2.0	58
231	DNA-induced conformational changes are the basis for cooperative dimerization by the DNA binding domain of the retinoid X receptor. Journal of Molecular Biology, 1998, 284, 533-539.	2.0	66
232	Structure of the recombinant full-length hamster prion protein PrP(29-231): The N terminus is highly flexible. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13452-13457.	3.3	665
233	Effects of Buried Charged Groups on Cysteine Thiol Ionization and Reactivity inEscherichia coliThioredoxin: Structural and Functional Characterization of Mutants of Asp 26 and Lys 57â€. Biochemistry, 1997, 36, 2622-2636.	1.2	192
234	Contribution of Increased Length and Intact Capping Sequences to the Conformational Preference for Helix in a 31-Residue Peptide from the C Terminus of Myohemerythrin. Biochemistry, 1997, 36, 5234-5244.	1.2	44

#	Article	IF	CITATIONS
235	Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site 1 1 Edited by F.E. Cohen. Journal of Molecular Biology, 1997, 266, 31-39.	2.0	77
236	Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions. Cell, 1997, 91, 741-752.	13.5	705
237	Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for structural characterization by NMR. FEBS Letters, 1997, 417, 92-96.	1.3	53
238	Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Letters, 1997, 419, 285-289.	1.3	135
239	PCR-based gene synthesis and protein NMR spectroscopy. Structure, 1997, 5, 1407-1412.	1.6	22
240	Folding propensities of peptide fragments of myoglobin. Protein Science, 1997, 6, 706-716.	3.1	82
241	Absence of a stable intermediate on the folding pathway of protein A. Protein Science, 1997, 6, 1449-1457.	3.1	117
242	INSIGHTS INTO PROTEIN FOLDING FROM NMR. Annual Review of Physical Chemistry, 1996, 47, 369-395.	4.8	144
243	NMR Solution Structure of Cu(l) Rusticyanin fromThiobacillus ferrooxidans: Structural Basis for the Extreme Acid Stability and Redox Potential. Journal of Molecular Biology, 1996, 263, 752-767.	2.0	104
244	Gene synthesis, high-level expression and assignment of backbone15N and13C resonances of soybean leghemoglobin. FEBS Letters, 1996, 399, 283-289.	1.3	12
245	Direct Measurement of the Aspartic Acid 26 pKafor ReducedEscherichia coliThioredoxin by13C NMRâ€. Biochemistry, 1996, 35, 1-6.	1.2	72
246	Solution conformation of an immunogenic peptide derived from the principal neutralizing determinant of the HIV-2 envelope glycoprotein gp125. Folding & Design, 1996, 1, 157-165.	4.5	8
247	Replacement of Trp28 in Escherichia coli Thioredoxin by Site-directed Mutagenesis Affects Thermodynamic Stability but Not Function. Journal of Biological Chemistry, 1996, 271, 3091-3096.	1.6	24
248	[30] Nuclear magnetic resonance of thioredoxin and glutaredoxin. Methods in Enzymology, 1995, 252, 293-306.	0.4	0
249	1H, 13C and 15N chemical shift referencing in biomolecular NMR. Journal of Biomolecular NMR, 1995, 6, 135-140.	1.6	2,216
250	â€~Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. Journal of Biomolecular NMR, 1995, 5, 14-24.	1.6	476
251	Antigenic peptides. FASEB Journal, 1995, 9, 37-42.	0.2	96
252	Detection of a Catalytic Antibody Species Acylated at the Active Site by Electrospray Mass Spectrometry. Biochemistry, 1995, 34, 720-723.	1.2	41

#	Article	IF	CITATIONS
253	Comparison of the Hydrogen-Exchange Behavior of Reduced and Oxidized Escherichia Coli Thioredoxin. Biochemistry, 1995, 34, 611-619.	1.2	61
254	Proton Sharing between Cysteine Thiols in Escherichia coli Thioredoxin: Implications for the Mechanism of Protein Disulfide Reduction. Biochemistry, 1995, 34, 10101-10105.	1.2	96
255	Complete13C assignments for recombinant Cu(I) rusticyanin prediction of secondary structure from patterns of chemical shifts. FEBS Letters, 1995, 365, 35-41.	1.3	6
256	Gene Synthesis, High-Level Expression, and Mutagenesis of Thiobacillus ferrooxidans Rusticyanin: His 85 Is a Ligand to the Blue Copper Center. Biochemistry, 1995, 34, 6640-6648.	1.2	66
257	Effect of disulfide bridge formation on the NMR spectrum of a protein: Studies on oxidized and reduced Escherichia coli thioredoxin. Journal of Biomolecular NMR, 1994, 4, 411-32.	1.6	30
258	High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure, 1994, 2, 853-868.	1.6	281
259	Characterization by1H NMR of a C32S,C35S double mutant ofEscherichia colithioredoxin confirms its resemblance to the reduced wild-type protein. FEBS Letters, 1994, 339, 11-17.	1.3	22
260	Stabilization of a type VI turn in a family of linear peptides in water solution. Journal of Molecular Biology, 1994, 243, 736-753.	2.0	152
261	Three-dimensional structure of a type VI turn in a linear peptide in water solution Evidence for stacking of aromatic rings as a major stabilizing factor. Journal of Molecular Biology, 1994, 243, 754-766.	2.0	118
262	[13] Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins. Methods in Enzymology, 1994, 239, 392-416.	0.4	111
263	Binding of hapten to a single-chain catalytic antibody demonstrated by electrospray mass spectrometry. Journal of the American Chemical Society, 1994, 116, 7937-7938.	6.6	29
264	Differential Side Chain Hydration in a Linear Peptide Containing a Type VI Turn. Journal of the American Chemical Society, 1994, 116, 12051-12052.	6.6	35
265	The Folding Pathway of Apomyoglobin. NATO ASI Series Series B: Physics, 1994, , 7-18.	0.2	4
266	Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin. Biochemistry, 1993, 32, 6356-6364.	1.2	109
267	Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helixes of myoglobin. Biochemistry, 1993, 32, 6337-6347.	1.2	209
268	Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin acts as a helix stop signal. Biochemistry, 1993, 32, 6348-6355.	1.2	92
269	Peptide conformation and protein folding. Current Opinion in Structural Biology, 1993, 3, 60-65.	2.6	232
270	Characterization of a folding intermediate of apoplastocyanin trapped by proline isomerization. Biochemistry, 1993, 32, 12299-12310.	1.2	103

#	Article	IF	CITATIONS
271	Comparison of backbone and tryptophan side-chain dynamics of reduced and oxidized Escherichia coli thioredoxin using nitrogen-15 NMR relaxation measurements. Biochemistry, 1993, 32, 426-435.	1.2	148
272	Immunogenic peptides corresponding to the dominant antigenic region alanine-597 to cysteine-619 in the transmembrane protein of simian immunodeficiency virus have a propensity to fold in aqueous solution. Biochemistry, 1992, 31, 1458-1463.	1.2	15
273	Folding of peptide fragments comprising the complete sequence of proteins. Journal of Molecular Biology, 1992, 226, 795-817.	2.0	385
274	Folding of peptide fragments comprising the complete sequence of proteins. Journal of Molecular Biology, 1992, 226, 819-835.	2.0	226
275	Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry, 1991, 30, 9187-9194.	1.2	155
276	Proton-transfer effects in the active-site region of Escherichia coli thioredoxin using two-dimensional proton NMR. Biochemistry, 1991, 30, 4262-4268.	1.2	76
277	Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis enzyme Illglc determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy. Biochemistry, 1991, 30, 6896-6907.	1.2	56
278	Assignment of the15N NMR spectra of reduced and oxidizedEscherichia colithioredoxin. FEBS Letters, 1991, 284, 178-183.	1.3	39
279	Three-dimensional solution structure of the reduced form of Escherichia coli thioredoxin determined by nuclear magnetic resonance spectroscopy. Biochemistry, 1990, 29, 4129-4136.	1.2	177
280	Conformational preferences of synthetic peptides derived from the immunodominant site of the circumsporozoite protein of Plasmodium falciparum by proton NMR. Biochemistry, 1990, 29, 7828-7837.	1.2	94
281	Antigen-antibody interactions: An NMR approach. Biochemical Pharmacology, 1990, 40, 83-88.	2.0	21
282	Proton NMR studies of the solution conformations of an analog of the C-peptide of ribonuclease A. Biochemistry, 1989, 28, 7059-7064.	1.2	162
283	Assignment of the proton NMR spectrum of reduced and oxidized thioredoxin: sequence-specific assignments, secondary structure, and global fold. Biochemistry, 1989, 28, 7074-7087.	1.2	102
284	Structural differences between oxidized and reduced thioredoxin monitored by two-dimensional 1 H NMR spectroscopy. FEBS Letters, 1988, 228, 254-258.	1.3	38
285	Folding of immunogenic peptide fragments of proteins in water solution. Journal of Molecular Biology, 1988, 201, 161-200.	2.0	685
286	Folding of immunogenic peptide fragments of proteins in water solution. Journal of Molecular Biology, 1988, 201, 201-217.	2.0	477
287	Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry, 1988, 27, 7167-7175.	1.2	505
288	Selection by Siteâ€Directed Antibodies of Small Regions of Peptides which are Ordered in Water. Novartis Foundation Symposium, 1986, 119, 58-75.	1.2	1

#	Article	IF	CITATIONS
289	The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn. Nature, 1985, 318, 480-483.	13.7	246
290	Chapter 5. NMR Studies of Disordered but Functional Proteins. RSC Biomolecular Sciences, 0, , 111-129.	0.4	0
291	Structural and dynamic studies of DNA recognition by NF-κB p50 RHR homodimer using methyl NMR spectroscopy. Nucleic Acids Research, 0, , .	6.5	1