
H Jane Dyson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 2005, 6, 197-208.	16.1	3,403
2	Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 1999, 293, 321-331.	2.0	2,668
3	1H, 13C and 15N chemical shift referencing in biomolecular NMR. Journal of Biomolecular NMR, 1995, 6, 135-140.	1.6	2,216
4	Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology, 2015, 16, 18-29.	16.1	1,849
5	Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology, 2002, 12, 54-60.	2.6	1,223
6	Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature, 2007, 447, 1021-1025.	13.7	984
7	Linking folding and binding. Current Opinion in Structural Biology, 2009, 19, 31-38.	2.6	932
8	The Dynamic Energy Landscape of Dihydrofolate Reductase Catalysis. Science, 2006, 313, 1638-1642.	6.0	877
9	Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions. Cell, 1997, 91, 741-752.	13.5	705
10	Folding of immunogenic peptide fragments of proteins in water solution. Journal of Molecular Biology, 1988, 201, 161-200.	2.0	685
11	Structure of the recombinant full-length hamster prion protein PrP(29-231): The N terminus is highly flexible. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13452-13457.	3.3	665
12	Unfolded Proteins and Protein Folding Studied by NMR. Chemical Reviews, 2004, 104, 3607-3622.	23.0	596
13	Sequence-Dependent Correction of Random Coil NMR Chemical Shifts. Journal of the American Chemical Society, 2001, 123, 2970-2978.	6.6	562
14	Copper binding to the prion protein: Structural implications of four identical cooperative binding sites. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2042-2047.	3.3	520
15	Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry, 1988, 27, 7167-7175.	1.2	505
16	Folding of immunogenic peptide fragments of proteins in water solution. Journal of Molecular Biology, 1988, 201, 201-217.	2.0	477
17	â€~Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. Journal of Biomolecular NMR, 1995, 5, 14-24.	1.6	476
18	Structure, Dynamics, and Catalytic Function of Dihydrofolate Reductase. Annual Review of Biophysics and Biomolecular Structure, 2004, 33, 119-140.	18.3	444

#	Article	IF	CITATIONS
19	An NMR Perspective on Enzyme Dynamics. Chemical Reviews, 2006, 106, 3055-3079.	23.0	424
20	Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature, 2002, 415, 549-553.	13.7	423
21	A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis. Science, 2011, 332, 234-238.	6.0	414
22	Folding of peptide fragments comprising the complete sequence of proteins. Journal of Molecular Biology, 1992, 226, 795-817.	2.0	385
23	Structural basis for Hif-1Â/CBP recognition in the cellular hypoxic response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5271-5276.	3.3	376
24	Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nature Structural Biology, 1998, 18, 148-155.	9.7	344
25	Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nature Structural and Molecular Biology, 2004, 11, 257-264.	3.6	320
26	High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure, 1994, 2, 853-868.	1.6	281
27	Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView. Journal of Biomolecular NMR, 2000, 18, 43-48.	1.6	272
28	The role of hydrophobic interactions in initiation and propagation of protein folding. Proceedings of the United States of America, 2006, 103, 13057-13061.	3.3	266
29	Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. Journal of Biological Chemistry, 2016, 291, 6714-6722.	1.6	251
30	The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn. Nature, 1985, 318, 480-483.	13.7	246
31	Backbone Dynamics in Dihydrofolate Reductase Complexes:Â Role of Loop Flexibility in the Catalytic Mechanismâ€. Biochemistry, 2001, 40, 9846-9859.	1.2	246
32	Peptide conformation and protein folding. Current Opinion in Structural Biology, 1993, 3, 60-65.	2.6	232
33	Folding of peptide fragments comprising the complete sequence of proteins. Journal of Molecular Biology, 1992, 226, 819-835.	2.0	226
34	What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 2013, 1, e24157.	1.9	226
35	Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9614-9619.	3.3	222
36	NMR Structural and Dynamic Characterization of the Acid-Unfolded State of Apomyoglobin Provides Insights into the Early Events in Protein Foldingâ€,â€į. Biochemistry, 2001, 40, 3561-3571.	1.2	212

#	Article	IF	CITATIONS
37	Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helixes of myoglobin. Biochemistry, 1993, 32, 6337-6347.	1.2	209
38	Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Advances in Protein Chemistry, 2002, 62, 311-340.	4.4	208
39	Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6591-6596.	3.3	197
40	Effects of Buried Charged Groups on Cysteine Thiol Ionization and Reactivity inEscherichia coliThioredoxin: Structural and Functional Characterization of Mutants of Asp 26 and Lys 57â€. Biochemistry, 1997, 36, 2622-2636.	1.2	192
41	Equilibrium NMR studies of unfolded and partially folded proteins. Nature Structural Biology, 1998, 5, 499-503.	9.7	187
42	Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of c-Myb. Journal of Molecular Biology, 2004, 337, 521-534.	2.0	181
43	Three-dimensional solution structure of the reduced form of Escherichia coli thioredoxin determined by nuclear magnetic resonance spectroscopy. Biochemistry, 1990, 29, 4129-4136.	1.2	177
44	Local Structural Plasticity of the Prion Protein. Analysis of NMR Relaxation Dynamicsâ€. Biochemistry, 2001, 40, 2743-2753.	1.2	171
45	Cooperativity in Transcription Factor Binding to the Coactivator CREB-binding Protein (CBP). Journal of Biological Chemistry, 2002, 277, 43168-43174.	1.6	166
46	Structural Basis for Cooperative Transcription Factor Binding to the CBP Coactivator. Journal of Molecular Biology, 2006, 355, 1005-1013.	2.0	166
47	Structural Characterization of Unfolded States of Apomyoglobin using Residual Dipolar Couplings. Journal of Molecular Biology, 2004, 340, 1131-1142.	2.0	165
48	Proton NMR studies of the solution conformations of an analog of the C-peptide of ribonuclease A. Biochemistry, 1989, 28, 7059-7064.	1.2	162
49	Structure of the Escherichia coli Quorum Sensing Protein SdiA: Activation of the Folding Switch by Acyl Homoserine Lactones. Journal of Molecular Biology, 2006, 355, 262-273.	2.0	162
50	Structure of the p53 Transactivation Domain in Complex with the Nuclear Receptor Coactivator Binding Domain of CREB Binding Protein. Biochemistry, 2010, 49, 9964-9971.	1.2	162
51	Functional advantages of dynamic protein disorder. FEBS Letters, 2015, 589, 2433-2440.	1.3	162
52	Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry, 1991, 30, 9187-9194.	1.2	155
53	Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nature Structural and Molecular Biology, 2013, 20, 1243-1249.	3.6	153
54	Stabilization of a type VI turn in a family of linear peptides in water solution. Journal of Molecular Biology, 1994, 243, 736-753.	2.0	152

#	Article	IF	CITATIONS
55	Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. Proceedings of the United States of America, 2005, 102, 5032-5037.	3.3	152
56	Expanding the proteome: disordered and alternatively folded proteins. Quarterly Reviews of Biophysics, 2011, 44, 467-518.	2.4	150
57	Comparison of backbone and tryptophan side-chain dynamics of reduced and oxidized Escherichia coli thioredoxin using nitrogen-15 NMR relaxation measurements. Biochemistry, 1993, 32, 426-435.	1.2	148
58	Nuclear Magnetic Resonance Methods for Elucidation of Structure and Dynamics in Disordered States. Methods in Enzymology, 2001, 339, 258-270.	0.4	148
59	Two different neurodegenerative diseases caused by proteins with similar structures. Proceedings of the United States of America, 2001, 98, 2352-2357.	3.3	147
60	Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO Journal, 2009, 28, 948-958.	3.5	147
61	INSIGHTS INTO PROTEIN FOLDING FROM NMR. Annual Review of Physical Chemistry, 1996, 47, 369-395.	4.8	144
62	Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. Journal of Molecular Biology, 2000, 304, 355-370.	2.0	141
63	Mapping Long-range Contacts in a Highly Unfolded Protein. Journal of Molecular Biology, 2002, 322, 655-662.	2.0	140
64	Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature, 2017, 543, 447-451.	13.7	140
65	Conformational preferences in the Ser133 -phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Letters, 1998, 430, 317-322.	1.3	137
66	DNA-induced α-helix capping in conserved linker sequences is a determinant of binding affinity in Cys2-His2 zinc fingers. Journal of Molecular Biology, 2000, 295, 719-727.	2.0	137
67	Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Letters, 1997, 419, 285-289.	1.3	135
68	Roles of Phosphorylation and Helix Propensity in the Binding of the KIX Domain of CREB-binding Protein by Constitutive (c-Myb) and Inducible (CREB) Activators. Journal of Biological Chemistry, 2002, 277, 42241-42248.	1.6	134
69	Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1373-1378.	3.3	133
70	Amylin Proprotein Processing Generates Progressively More Amyloidogenic Peptides that Initially Sample the Helical State. Biochemistry, 2008, 47, 9900-9910.	1.2	132
71	Molecular Hinges in Protein Folding: the Urea-Denatured State of Apomyoglobinâ€. Biochemistry, 2002, 41, 12681-12686.	1.2	130
72	Solution Structure of the Cysteine-rich Domain of the Escherichia coli Chaperone Protein DnaJ. Journal of Molecular Biology, 2000, 300, 805-818.	2.0	121

#	Article	IF	CITATIONS
73	Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. Journal of Molecular Biology, 2000, 303, 243-253.	2.0	121
74	Native and Non-native Secondary Structure and Dynamics in the pH 4 Intermediate of Apomyoglobinâ€. Biochemistry, 2000, 39, 2894-2901.	1.2	121
75	The client protein p53 adopts a molten globule–like state in the presence of Hsp90. Nature Structural and Molecular Biology, 2011, 18, 537-541.	3.6	121
76	Solution Structure of the Hdm2 C2H2C4 RING, a Domain Critical for Ubiquitination of p53. Journal of Molecular Biology, 2006, 363, 433-450.	2.0	120
77	Conformational Changes in the Active Site Loops of Dihydrofolate Reductase during the Catalytic Cycleâ€. Biochemistry, 2004, 43, 16046-16055.	1.2	119
78	Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13260-13265.	3.3	119
79	Three-dimensional structure of a type VI turn in a linear peptide in water solution Evidence for stacking of aromatic rings as a major stabilizing factor. Journal of Molecular Biology, 1994, 243, 754-766.	2.0	118
80	Absence of a stable intermediate on the folding pathway of protein A. Protein Science, 1997, 6, 1449-1457.	3.1	117
81	Molecular basis for modulation of biological function by alternate splicing of the Wilms' tumor suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11932-11935.	3.3	115
82	SANE (Structure Assisted NOE Evaluation): an automated model-based approach for NOE assignment. Journal of Biomolecular NMR, 2001, 19, 321-329.	1.6	113
83	Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water. Journal of Biomolecular NMR, 2002, 22, 317-331.	1.6	112
84	Identification of Native and Non-native Structure in Kinetic Folding Intermediates of Apomyoglobin. Journal of Molecular Biology, 2006, 355, 139-156.	2.0	112
85	[13] Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins. Methods in Enzymology, 1994, 239, 392-416.	0.4	111
86	Finding Our Way in the Dark Proteome. Journal of the American Chemical Society, 2016, 138, 9730-9742.	6.6	111
87	Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin. Biochemistry, 1993, 32, 6356-6364.	1.2	109
88	Mapping the Interactions of the p53 Transactivation Domain with the KIX Domain of CBP. Biochemistry, 2009, 48, 2115-2124.	1.2	109
89	Modeling transient collapsed states of an unfolded protein to provide insights into early folding events. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6278-6283.	3.3	105
90	Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. Journal of Molecular Biology, 2018, 430, 2309-2320.	2.0	105

#	Article	IF	CITATIONS
91	NMR Solution Structure of Cu(I) Rusticyanin fromThiobacillus ferrooxidans: Structural Basis for the Extreme Acid Stability and Redox Potential. Journal of Molecular Biology, 1996, 263, 752-767.	2.0	104
92	NMR Characterization of the Metallo-β-lactamase from Bacteroides fragilis and Its Interaction with a Tight-Binding Inhibitor:  Role of an Active-Site Loop. Biochemistry, 1999, 38, 14507-14514.	1.2	104
93	Characterization of a folding intermediate of apoplastocyanin trapped by proline isomerization. Biochemistry, 1993, 32, 12299-12310.	1.2	103
94	Assignment of the proton NMR spectrum of reduced and oxidized thioredoxin: sequence-specific assignments, secondary structure, and global fold. Biochemistry, 1989, 28, 7074-7087.	1.2	102
95	Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15229-15234.	3.3	101
96	Activation of the Redox-regulated Chaperone Hsp33 by Domain Unfolding. Journal of Biological Chemistry, 2004, 279, 20529-20538.	1.6	100
97	Monomeric Complex of Human Orphan Estrogen Related Receptor-2 with DNA: A Pseudo-dimer Interface Mediates Extended Half-site Recognition. Journal of Molecular Biology, 2003, 327, 819-832.	2.0	97
98	Interaction of the TAZ1 Domain of the CREB-Binding Protein with the Activation Domain of CITED2. Journal of Biological Chemistry, 2004, 279, 3042-3049.	1.6	97
99	Evaluating β-turn mimics as β-sheet folding nucleators. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11067-11072.	3.3	97
100	Antigenic peptides. FASEB Journal, 1995, 9, 37-42.	0.2	96
101	Proton Sharing between Cysteine Thiols in Escherichia coli Thioredoxin: Implications for the Mechanism of Protein Disulfide Reduction. Biochemistry, 1995, 34, 10101-10105.	1.2	96
102	Conservation of folding pathways in evolutionarily distant globin sequences. Nature Structural Biology, 2000, 7, 679-686.	9.7	95
103	Conformational preferences of synthetic peptides derived from the immunodominant site of the circumsporozoite protein of Plasmodium falciparum by proton NMR. Biochemistry, 1990, 29, 7828-7837.	1.2	94
104	Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1853-62.	3.3	94
105	Quenchâ€flow experiments combined with mass spectrometry show apomyoglobin folds through an obligatory intermediate. Protein Science, 1999, 8, 45-49.	3.1	93
106	Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11302-E11310.	3.3	93
107	Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin acts as a helix stop signal. Biochemistry, 1993, 32, 6348-6355.	1.2	92
108	Structure of the Wilms Tumor Suppressor Protein Zinc Finger Domain Bound to DNA. Journal of Molecular Biology, 2007, 372, 1227-1245.	2.0	91

#	Article	IF	CITATIONS
109	Elucidation of the Protein Folding Landscape by NMR. Methods in Enzymology, 2005, 394, 299-321.	0.4	90
110	The Apomyoglobin Folding Pathway Revisited: Structural Heterogeneity in the Kinetic Burst Phase Intermediate. Journal of Molecular Biology, 2002, 322, 483-489.	2.0	89
111	Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13859-13864.	3.3	89
112	NMR Relaxation Study of the Complex Formed Between CBP and the Activation Domain of the Nuclear Hormone Receptor Coactivator ACTR ^{â€} . Biochemistry, 2008, 47, 1299-1308.	1.2	86
113	Structural and Energetic Basis of Carbohydrate–Aromatic Packing Interactions in Proteins. Journal of the American Chemical Society, 2013, 135, 9877-9884.	6.6	85
114	Improved low pH bicelle system for orienting macromolecules over a wide temperature range. Journal of Biomolecular NMR, 1999, 13, 387-391.	1.6	84
115	Folding propensities of peptide fragments of myoglobin. Protein Science, 1997, 6, 706-716.	3.1	82
116	Calculations of Electrostatic Interactions and pKas in the Active Site of Escherichia coli Thioredoxin,. Biochemistry, 1998, 37, 10298-10306.	1.2	82
117	ZZ Domain of CBP: an Unusual Zinc Finger Fold in a Protein Interaction Module. Journal of Molecular Biology, 2004, 343, 1081-1093.	2.0	81
118	Making Sense of Intrinsically Disordered Proteins. Biophysical Journal, 2016, 110, 1013-1016.	0.2	81
119	Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin 1 1Edited by F. Cohen. Journal of Molecular Biology, 1999, 285, 269-282.	2.0	79
120	Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions. Protein Science, 2001, 10, 1056-1066.	3.1	79
121	Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site 1 1 Edited by F.E. Cohen. Journal of Molecular Biology, 1997, 266, 31-39.	2.0	77
122	A Distal Mutation Perturbs Dynamic Amino Acid Networks in Dihydrofolate Reductase. Biochemistry, 2013, 52, 4605-4619.	1.2	77
123	Proton-transfer effects in the active-site region of Escherichia coli thioredoxin using two-dimensional proton NMR. Biochemistry, 1991, 30, 4262-4268.	1.2	76
124	CBP/p300 TAZ1 Domain Forms a Structured Scaffold for Ligand Binding,. Biochemistry, 2005, 44, 490-497.	1.2	76
125	Roles of intrinsic disorder in protein–nucleic acid interactions. Molecular BioSystems, 2012, 8, 97-104.	2.9	76
126	NMR solution structure of the inserted domain of human leukocyte function associated antigen-1. Journal of Molecular Biology, 2000, 295, 1251-1264.	2.0	74

#	Article	IF	CITATIONS
127	Glycosylation of Threonine of the Repeating Unit of RNA Polymerase II with β-LinkedN-Acetylglucosame Leads to a Turnlike Structure. Journal of the American Chemical Society, 1998, 120, 11567-11575.	6.6	73
128	Effect of Cofactor Binding and Loop Conformation on Side Chain Methyl Dynamics in Dihydrofolate Reductase. Biochemistry, 2004, 43, 374-383.	1.2	73
129	Direct Measurement of the Aspartic Acid 26 pKafor ReducedEscherichia coliThioredoxin by13C NMRâ€. Biochemistry, 1996, 35, 1-6.	1.2	72
130	Induced Fit and "Lock and Key―Recognition of 5S RNA by Zinc Fingers of Transcription Factor IIIA. Journal of Molecular Biology, 2006, 357, 275-291.	2.0	72
131	Dynamic Interaction of Hsp90 with Its Client Protein p53. Journal of Molecular Biology, 2011, 411, 158-173.	2.0	72
132	Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases. Journal of Molecular Biology, 2001, 310, 907-918.	2.0	71
133	Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains. Journal of Molecular Biology, 1999, 287, 859-865.	2.0	68
134	Changes in the Apomyoglobin Folding Pathway Caused by Mutation of the Distal Histidine Residue. Biochemistry, 2000, 39, 11227-11237.	1.2	68
135	Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight?. Protein Science, 2001, 10, 1005-1014.	3.1	68
136	Gene Synthesis, High-Level Expression, and Mutagenesis of Thiobacillus ferrooxidans Rusticyanin: His 85 Is a Ligand to the Blue Copper Center. Biochemistry, 1995, 34, 6640-6648.	1.2	66
137	DNA-induced conformational changes are the basis for cooperative dimerization by the DNA binding domain of the retinoid X receptor. Journal of Molecular Biology, 1998, 284, 533-539.	2.0	66
138	Packing, specificity, and mutability at the binding interface between the p160 coactivator and CREB-binding protein. Protein Science, 2004, 13, 203-210.	3.1	66
139	Localized Structural Fluctuations Promote Amyloidogenic Conformations in Transthyretin. Journal of Molecular Biology, 2013, 425, 977-988.	2.0	65
140	Identification of Cys255 in HIFâ€1α as a novel site for development of covalent inhibitors of HIFâ€1α/ARNT PasB domain protein–protein interaction. Protein Science, 2012, 21, 1885-1896.	3.1	64
141	The LEF-1 High-Mobility Group Domain Undergoes a Disorder-to-Order Transition upon Formation of a Complex with Cognate DNAâ€. Biochemistry, 2004, 43, 8725-8734.	1.2	62
142	Enhanced picture of protein-folding intermediates using organic solvents in H/D exchange and quench-flow experiments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4765-4770.	3.3	62
143	Comparison of the Hydrogen-Exchange Behavior of Reduced and Oxidized Escherichia Coli Thioredoxin. Biochemistry, 1995, 34, 611-619.	1.2	61
144	Transfer of Flexibility between Ankyrin Repeats in lκBα upon Formation of the NF-κB Complex. Journal of Molecular Biology, 2008, 380, 917-931.	2.0	61

#	Article	IF	CITATIONS
145	The High-Risk HPV16 E7 Oncoprotein Mediates Interaction between the Transcriptional Coactivator CBP and the Retinoblastoma Protein pRb. Journal of Molecular Biology, 2014, 426, 4030-4048.	2.0	61
146	NMR illuminates intrinsic disorder. Current Opinion in Structural Biology, 2021, 70, 44-52.	2.6	60
147	Dynamics of the Metallo-β-Lactamase from Bacteroides fragilis in the Presence and Absence of a Tight-Binding Inhibitor. Biochemistry, 2000, 39, 13356-13364.	1.2	59
148	High-resolution solution structure of the retinoid X receptor DNA-binding domain. Journal of Molecular Biology, 1998, 281, 271-284.	2.0	58
149	Alternative Splicing of Wilms' Tumor Suppressor Protein Modulates DNA Binding Activity through Isoform-Specific DNA-Induced Conformational Changesâ€. Biochemistry, 2000, 39, 5341-5348.	1.2	58
150	Localization of Sites of Interaction between p23 and Hsp90 in Solution. Journal of Biological Chemistry, 2006, 281, 14457-14464.	1.6	58
151	Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis enzyme IIIglc determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy. Biochemistry, 1991, 30, 6896-6907.	1.2	56
152	Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-β-lactamase. Protein Science, 2003, 12, 1368-1375.	3.1	56
153	Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5335-E5342.	3.3	56
154	Efficient Inhibition of Escherichia Coli RNA Polymerase by the Bacteriophage T4 AsiA Protein Requires that AsiA Binds First to Free σ70. Journal of Molecular Biology, 2000, 304, 731-739.	2.0	55
155	Sequence Determinants of a Protein Folding Pathway. Journal of Molecular Biology, 2005, 351, 383-392.	2.0	54
156	Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for structural characterization by NMR. FEBS Letters, 1997, 417, 92-96.	1.3	53
157	The Intrinsically Disordered RNR Inhibitor Sml1 Is a Dynamic Dimer. Biochemistry, 2008, 47, 13428-13437.	1.2	53
158	Conformational Relaxation following Hydride Transfer Plays a Limiting Role in Dihydrofolate Reductase Catalysisâ€. Biochemistry, 2008, 47, 9227-9233.	1.2	53
159	Prion Proteins with Pathogenic and Protective Mutations Show Similar Structure and Dynamics. Biochemistry, 2009, 48, 8120-8128.	1.2	53
160	The Zinc-dependent Redox Switch Domain of the Chaperone Hsp33 has a Novel Fold. Journal of Molecular Biology, 2004, 341, 893-899.	2.0	52
161	Tailoring Relaxation Dispersion Experiments for Fast-Associating Protein Complexes. Journal of the American Chemical Society, 2007, 129, 13406-13407.	6.6	52
162	Role of the B Helix in Early Folding Events in Apomyoglobin: Evidence from Site-directed Mutagenesis for Native-like Long Range Interactions. Journal of Molecular Biology, 2003, 334, 293-307.	2.0	51

#	Article	IF	CITATIONS
163	Prediction of the Rotational Tumbling Time for Proteins with Disordered Segments. Journal of the American Chemical Society, 2009, 131, 6814-6821.	6.6	48
164	Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. Journal of Biomolecular NMR, 2019, 73, 651-659.	1.6	48
165	Conformational and Dynamic Characterization of the Molten Globule State of an Apomyoglobin Mutant with an Altered Folding Pathwayâ€. Biochemistry, 2001, 40, 14459-14467.	1.2	45
166	Cofactor-Mediated Conformational Dynamics Promote Product Release From <i>Escherichia coli</i> Dihydrofolate Reductase via an Allosteric Pathway. Journal of the American Chemical Society, 2015, 137, 9459-9468.	6.6	45
167	Contribution of Increased Length and Intact Capping Sequences to the Conformational Preference for Helix in a 31-Residue Peptide from the C Terminus of Myohemerythrin. Biochemistry, 1997, 36, 5234-5244.	1.2	44
168	Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods. Journal of Biomolecular NMR, 2001, 21, 1-9.	1.6	44
169	The Dependence of Carbohydrate–Aromatic Interaction Strengths on the Structure of the Carbohydrate. Journal of the American Chemical Society, 2016, 138, 7636-7648.	6.6	44
170	How Does Your Protein Fold? Elucidating the Apomyoglobin Folding Pathway. Accounts of Chemical Research, 2017, 50, 105-111.	7.6	44
171	Inherent flexibility in a potent inhibitor of blood coagulation, recombinant nematode anticoagulant protein c2. FEBS Journal, 1999, 265, 539-548.	0.2	42
172	Detection of a Catalytic Antibody Species Acylated at the Active Site by Electrospray Mass Spectrometry. Biochemistry, 1995, 34, 720-723.	1.2	41
173	The CBP/p300 TAZ1 domain in its native state is not a binding partner of MDM2. Biochemical Journal, 2004, 381, 685-691.	1.7	41
174	Role of disorder in ll̂ºB–NFκB interaction. IUBMB Life, 2012, 64, 499-505.	1.5	41
175	Assignment of the15N NMR spectra of reduced and oxidizedEscherichia colithioredoxin. FEBS Letters, 1991, 284, 178-183.	1.3	39
176	Structural differences between oxidized and reduced thioredoxin monitored by two-dimensional 1 H NMR spectroscopy. FEBS Letters, 1988, 228, 254-258.	1.3	38
177	Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes. Protein Science, 2009, 12, 2230-2238.	3.1	38
178	Disulfide Bonding Arrangements in Active Forms of the Somatomedin B Domain of Human Vitronectinâ€. Biochemistry, 2004, 43, 6519-6534.	1.2	37
179	Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling. Journal of Biomolecular NMR, 2005, 31, 59-64.	1.6	36
180	Differential Side Chain Hydration in a Linear Peptide Containing a Type VI Turn. Journal of the American Chemical Society, 1994, 116, 12051-12052.	6.6	35

#	Article	IF	CITATIONS
181	Role of Backbone Dynamics in Modulating the Interactions of Disordered Ligands with the TAZ1 Domain of the CREB-Binding Protein. Biochemistry, 2019, 58, 1354-1362.	1.2	33
182	A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
183	Leu628 of the KIX domain of CBP is a key residue for the interaction with the MLL transactivation domain. FEBS Letters, 2010, 584, 4500-4504.	1.3	32
184	Functional importance of stripping in NFκB signaling revealed by a stripping-impaired lκBα mutant. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1916-1921.	3.3	32
185	Effect of disulfide bridge formation on the NMR spectrum of a protein: Studies on oxidized and reduced Escherichia coli thioredoxin. Journal of Biomolecular NMR, 1994, 4, 411-32.	1.6	30
186	Association between the first two immunoglobulin-like domains of the neural cell adhesion molecule N-CAM. FEBS Letters, 1999, 451, 162-168.	1.3	30
187	NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations. Biochemistry, 2018, 57, 4421-4430.	1.2	30
188	Binding of hapten to a single-chain catalytic antibody demonstrated by electrospray mass spectrometry. Journal of the American Chemical Society, 1994, 116, 7937-7938.	6.6	29
189	Folding of a β-sheet Protein Monitored by Real-time NMR Spectroscopy. Journal of Molecular Biology, 2003, 328, 1161-1171.	2.0	29
190	The RelA Nuclear Localization Signal Folds upon Binding to lκBα. Journal of Molecular Biology, 2011, 405, 754-764.	2.0	29
191	Kinetic analysis of the multistep aggregation pathway of human transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6201-E6208.	3.3	29
192	Interaction of the lκBα C-terminal PEST Sequence with NF-κB: Insights into the Inhibition of NF-κB DNA Binding by lκBα. Journal of Molecular Biology, 2009, 388, 824-838.	2.0	28
193	Defining the Structural Basis for Allosteric Product Release from <i>E. coli</i> Dihydrofolate Reductase Using NMR Relaxation Dispersion. Journal of the American Chemical Society, 2017, 139, 11233-11240.	6.6	27
194	Structural Basis for Interaction of the Tandem Zinc Finger Domains of Human Muscleblind with Cognate RNA from Human Cardiac Troponin T. Biochemistry, 2017, 56, 4154-4168.	1.2	27
195	The Kinetic and Equilibrium Molten Globule Intermediates of Apoleghemoglobin Differ in Structure. Journal of Molecular Biology, 2008, 378, 715-725.	2.0	26
196	Detection of a ternary complex of NF-l̂ºB and ll̂ºBl̂± with DNA provides insights into how ll̂ºBl̂± removes NF-l̂ºB from transcription sites. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1367-1372.	3.3	26
197	Slow Dynamics of Tryptophan–Water Networks in Proteins. Journal of the American Chemical Society, 2018, 140, 675-682.	6.6	26
198	Sequence requirements for stabilization of a peptide reverse turn in water solution. Proline is not essential for stability. FEBS Journal, 1998, 255, 462-471.	0.2	25

#	Article	IF	CITATIONS
199	Solution structure of the third immunoglobulin domain of the neural cell adhesion molecule N-CAM: can solution studies define the mechanism of homophilic binding?. Journal of Molecular Biology, 2001, 311, 161-172.	2.0	25
200	Replacement of Trp28 in Escherichia coli Thioredoxin by Site-directed Mutagenesis Affects Thermodynamic Stability but Not Function. Journal of Biological Chemistry, 1996, 271, 3091-3096.	1.6	24
201	Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from ¹⁵ Nâ€ ¹ H NMR spectra. Protein Science, 2000, 9, 186-193.	3.1	23
202	Characterization by1H NMR of a C32S,C35S double mutant ofEscherichia colithioredoxin confirms its resemblance to the reduced wild-type protein. FEBS Letters, 1994, 339, 11-17.	1.3	22
203	PCR-based gene synthesis and protein NMR spectroscopy. Structure, 1997, 5, 1407-1412.	1.6	22
204	Functional Dynamics of the Folded Ankyrin Repeats of lκBα Revealed by Nuclear Magnetic Resonance. Biochemistry, 2009, 48, 8023-8031.	1.2	22
205	How Do Intrinsically Disordered Viral Proteins Hijack the Cell?. Biochemistry, 2018, 57, 4045-4046.	1.2	22
206	Multivalency enables unidirectional switch-like competition between intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
207	Antigen-antibody interactions: An NMR approach. Biochemical Pharmacology, 1990, 40, 83-88.	2.0	21
208	Embryonic Neural Inducing Factor Churchill Is not a DNA-binding Zinc Finger Protein: Solution Structure Reveals a Solvent-exposed β-Sheet and Zinc Binuclear Cluster. Journal of Molecular Biology, 2007, 371, 1274-1289.	2.0	21
209	Structure of the Nuclear Factor ALY:  Insights into Post-Transcriptional Regulatory and mRNA Nuclear Export Processes. Biochemistry, 2003, 42, 7348-7357.	1.2	20
210	According to current textbooks, a well-defined three-dimensional structure is a prerequisite for the function of a protein. Is this correct?. IUBMB Life, 2006, 58, 107-109.	1.5	20
211	Structural Characterization of Interactions between the Double-Stranded RNA-Binding Zinc Finger Protein JAZ and Nucleic Acids. Biochemistry, 2014, 53, 1495-1510.	1.2	20
212	Fluorotryptophan Incorporation Modulates the Structure and Stability of Transthyretin in a Site-Specific Manner. Biochemistry, 2017, 56, 5570-5581.	1.2	20
213	NMR Solution Structure of the Peptide Fragment 1â^'30, Derived from Unprocessed Mouse Doppel Protein, in DHPC Micellesâ€. Biochemistry, 2006, 45, 159-166.	1.2	19
214	CH···O Hydrogen Bonds Mediate Highly Specific Recognition of Methylated CpG Sites by the Zinc Finger Protein Kaiso. Biochemistry, 2018, 57, 2109-2120.	1.2	19
215	Solution Structure of the N-terminal Zinc Fingers of the Xenopus laevis double-stranded RNA-binding Protein ZFa. Journal of Molecular Biology, 2005, 351, 718-730.	2.0	18
216	Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP. Protein Science, 2016, 25, 2256-2267.	3.1	18

#	Article	IF	CITATIONS
217	Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10040-10045.	3.3	18
218	A NOESY-HSQC simulation program, SPIRIT. Journal of Biomolecular NMR, 1998, 11, 17-29.	1.6	17
219	Structure discrimination for the C-terminal domain of Escherichia coli trigger factor in solution. Journal of Biomolecular NMR, 2008, 40, 23-30.	1.6	17
220	Energetic Frustration of Apomyoglobin Folding: Role of the B Helix. Journal of Molecular Biology, 2010, 396, 1319-1328.	2.0	17
221	Kaiso uses all three zinc fingers and adjacent sequence motifs for high affinity binding to sequenceâ€specific and methyl pG DNA targets. FEBS Letters, 2012, 586, 734-739.	1.3	17
222	Structural characterization of partially folded intermediates of apomyoglobin H64F. Protein Science, 2008, 17, 313-321.	3.1	16
223	Hydrogen–deuterium exchange strategy for delineation of contact sites in protein complexes. FEBS Letters, 2008, 582, 1495-1500.	1.3	16
224	Consequences of Stabilizing the Natively Disordered F Helix for the Folding Pathway of Apomyoglobin. Journal of Molecular Biology, 2011, 411, 248-263.	2.0	16
225	Side-Chain Conformational Heterogeneity of Intermediates in the <i>Escherichia coli</i> Dihydrofolate Reductase Catalytic Cycle. Biochemistry, 2013, 52, 3464-3477.	1.2	16
226	Probing the Non-Native H Helix Translocation in Apomyoglobin Folding Intermediates. Biochemistry, 2014, 53, 3767-3780.	1.2	16
227	Immunogenic peptides corresponding to the dominant antigenic region alanine-597 to cysteine-619 in the transmembrane protein of simian immunodeficiency virus have a propensity to fold in aqueous solution. Biochemistry, 1992, 31, 1458-1463.	1.2	15
228	Identification of the regions involved in DNA binding by the mouse PEBP2α protein. FEBS Letters, 2000, 470, 125-130.	1.3	15
229	NMR characterization of a single-cysteine mutant of Escherichia coli thioredoxin and a covalent thioredoxin-peptide complex. FEBS Journal, 1998, 257, 299-308.	0.2	14
230	Changes in structure and dynamics of the Fv fragment of a catalytic antibody upon binding of inhibitor. Protein Science, 2003, 12, 1386-1394.	3.1	14
231	Thermodynamic Stability and Aggregation Kinetics of EF Helix and EF Loop Variants of Transthyretin. Biochemistry, 2021, 60, 756-764.	1.2	14
232	Characterization of an Hsp90-Independent Interaction between Co-Chaperone p23 and Transcription Factor p53. Biochemistry, 2018, 57, 935-944.	1.2	13
233	Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Cell Chemical Biology, 2020, 27, 292-305.e6.	2.5	13
234	Gene synthesis, high-level expression and assignment of backbone15N and13C resonances of soybean leghemoglobin. FEBS Letters, 1996, 399, 283-289.	1.3	12

#	Article	IF	CITATIONS
235	The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Letters, 2013, 587, 2506-2511.	1.3	12
236	The Reduced, Denatured Somatomedin B Domain of Vitronectin Refolds into a Stable, Biologically Active Molecule. Biochemistry, 2006, 45, 3297-3306.	1.2	11
237	Long-Range Effects and Functional Consequences of Stabilizing Mutations in the Ankyrin Repeat Domain of lκBα. Journal of Molecular Biology, 2013, 425, 902-913.	2.0	10
238	Characterization of the High-Affinity Fuzzy Complex between the Disordered Domain of the E7 Oncoprotein from High-Risk HPV and the TAZ2 Domain of CBP. Biochemistry, 2021, 60, 3887-3898.	1.2	9
239	Solution conformation of an immunogenic peptide derived from the principal neutralizing determinant of the HIV-2 envelope glycoprotein gp125. Folding & Design, 1996, 1, 157-165.	4.5	8
240	Side Chain Conformational Averaging in Human Dihydrofolate Reductase. Biochemistry, 2014, 53, 1134-1145.	1.2	8
241	Structural characterization of the ternary complex that mediates termination of NF-ήB signaling by lήBα. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6212-6217.	3.3	8
242	<scp>NMR</scp> characterization of a 72 k <scp>D</scp> a transcription factor using differential isotopic labeling. Protein Science, 2016, 25, 597-604.	3.1	8
243	Mispacking of the Phe87 Side Chain Reduces the Kinetic Stability of Human Transthyretin. Biochemistry, 2018, 57, 6919-6922.	1.2	8
244	Assignment of 1H, 13C and 15N resonances of the I-domain of human leukocyte function associated antigen-1. Journal of Biomolecular NMR, 2000, 16, 271-272.	1.6	7
245	Letter to the Editor: Backbone and side chain 1H, 13C and 15N assignments for Escherichia coli SdiA1-171, the autoinducer-binding domain of a quorum sensing protein. Journal of Biomolecular NMR, 2005, 31, 373-374.	1.6	7
246	NMR detection of adventitious xylose binding to the quorum-sensing protein SdiA of Escherichia coli. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6202-6205.	1.0	7
247	Structural Basis for Graded Inhibition of CREB:DNA Interactions by Multisite Phosphorylation. Biochemistry, 2018, 57, 6964-6972.	1.2	7
248	Comparison of backbone dynamics of the p50 dimerization domain of NFκB in the homodimeric transcription factor NFκB1 and in its heterodimeric complex with RelA (p65). Protein Science, 2019, 28, 2064-2072.	3.1	7
249	Aggregation of zincâ€free p53 is inhibited by Hsp90 but not other chaperones. Protein Science, 2019, 28, 2020-2023.	3.1	7
250	A Dynamic Switch in Inactive p38Î ³ Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry, 2019, 58, 5160-5172.	1.2	7
251	A Conformational Switch in the Zinc Finger Protein Kaiso Mediates Differential Readout of Specific and Methylated DNA Sequences. Biochemistry, 2020, 59, 1909-1926.	1.2	7
252	Complete13C assignments for recombinant Cu(I) rusticyanin prediction of secondary structure from patterns of chemical shifts. FEBS Letters, 1995, 365, 35-41.	1.3	6

#	Article	IF	CITATIONS
253	The identification of metalâ€binding ligand residues in metalloproteins using nuclear magnetic resonance spectroscopy. Protein Science, 1998, 7, 2476-2479.	3.1	6
254	Assignment of a 15 kDa protein complex formed between the p160 coactivator ACTR and CREB binding protein. Journal of Biomolecular NMR, 2002, 22, 377-378.	1.6	6
255	The molecular basis of allostery in a facilitated dissociation process. Structure, 2021, 29, 1327-1338.e5.	1.6	6
256	1H, 13C and 15N NMR backbone assignments of 25.5 kDa metallo-beta-lactamase from Bacteroides fragilis. Journal of Biomolecular NMR, 1998, 12, 201-202.	1.6	5
257	Characterization of monomeric and dimeric B domain of Staphylococcal protein A. Chemical Biology and Drug Design, 1999, 54, 344-352.	1.2	5
258	Homodimerization of the PAS-B Domains of Hypoxia-Inducible Factors. Journal of Physical Chemistry B, 2012, 116, 6960-6965.	1.2	5
259	A transthyretin monomer intermediate undergoes local unfolding and transient interaction with oligomers in a kinetically concerted aggregation pathway. Journal of Biological Chemistry, 2022, 298, 102162.	1.6	5
260	Backbone resonance assignments for the Fv fragment of the catalytic antibody NPN43C9 with bound p-nitrophenol. Journal of Biomolecular NMR, 1999, 15, 83-84.	1.6	4
261	Structure and Function of the CBP/p300 TAZ Domains. , 2005, , 114-120.		4
262	CheShift-2 resolves a local inconsistency between two X-ray crystal structures. Journal of Biomolecular NMR, 2012, 54, 193-198.	1.6	4
263	Classic Analysis of Biopolymer Dynamics Is Model Free. Biophysical Journal, 2016, 110, 3-6.	0.2	4
264	RNA Binding by the KTS Splice Variants of Wilms' Tumor Suppressor Protein WT1. Biochemistry, 2020, 59, 3889-3901.	1.2	4
265	Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion. Biophysical Journal, 2021, 120, 296-305.	0.2	4
266	Using NMR to identify binding regions for N and C-terminal Hsp90 inhibitors using Hsp90 domains. RSC Medicinal Chemistry, 2021, 12, 410-415.	1.7	4
267	Role of Active Site Loop Dynamics in Mediating Ligand Release from <i>E. coli</i> Dihydrofolate Reductase. Biochemistry, 2021, 60, 2663-2671.	1.2	4
268	The Folding Pathway of Apomyoglobin. NATO ASI Series Series B: Physics, 1994, , 7-18.	0.2	4
269	Interactions of a Long Noncoding RNA with Domains of NF-κB and IκBα: Implications for the Inhibition of Non-Signal-Related Phosphorylation. Biochemistry, 2022, 61, 367-376.	1.2	4
270	Assignment of 1H, 13C, and 15N resonances of reduced Escherichia coli glutaredoxin 2. Journal of Biomolecular NMR, 1999, 14, 197-198.	1.6	3

#	Article	IF	CITATIONS
271	Backbone H(N), N, Calpha, C' and Cbeta assignments of the 19 kDa DHFR/NADPH complex at 9 degrees C and pH 7.6. Journal of Biomolecular NMR, 2000, 16, 349-350.	1.6	3
272	Introduction:  Biological Nuclear Magnetic Resonance. Chemical Reviews, 2004, 104, 3517-3518.	23.0	2
273	Backbone and side-chain chemical shift assignments of p50 subunit of NF-κB transcription factor. Biomolecular NMR Assignments, 2021, 15, 29-33.	0.4	2
274	Unfolded Proteins and Protein Folding Studied by NMR. ChemInform, 2004, 35, no.	0.1	1
275	Selection by Siteâ€Directed Antibodies of Small Regions of Peptides which are Ordered in Water. Novartis Foundation Symposium, 1986, 119, 58-75.	1.2	1
276	Structural and dynamic studies of DNA recognition by NF-κB p50 RHR homodimer using methyl NMR spectroscopy. Nucleic Acids Research, 0, , .	6.5	1
277	[30] Nuclear magnetic resonance of thioredoxin and glutaredoxin. Methods in Enzymology, 1995, 252, 293-306.	0.4	Ο
278	3PO40 Mapping the Interactions of the Intrinsically Disordered p53 Transactivation Subdomains with the TAZ2 Domain of CBP by NMR(Protein: Structure & Function,The 48th Annual Meeting of the) Tj ETQq0 0 0 r	gBTo/ O verl	ocko10 Tf 50
279	Chapter 5. NMR Studies of Disordered but Functional Proteins. RSC Biomolecular Sciences, 0, , 111-129.	0.4	0
280	Biomolecular Systems Interactions, Dynamics, and Allostery: Reflections and New Directions. Biophysical Journal, 2015, 109, E01-E02.	0.2	0
281	Greetings from Your New Editor-in-Chief. Biophysical Journal, 2017, 113, E1.	0.2	0
282	Is the BJ Review Process Gender-Biased?. Biophysical Journal, 2018, 114, E1.	0.2	0
283	Economics and Politics of Publishing in Our Mission-Driven Society. Biophysical Journal, 2019, 116, E1-E2.	0.2	0
284	A Journal for All Biophysics. Biophysical Journal, 2019, 116, E1.	0.2	0
285	Reflections on the Pandemic. Biophysical Journal, 2020, 119, E1.	0.2	0
286	Early Strides in NMR Dynamics Measurements. Biochemistry, 2021, 60, 3452-3454.	1.2	0
287	Diversity at BJ: The editors, the reviewers, theÂauthors. Biophysical Journal, 2021, 120, E1-E2.	0.2	0
288	Dynamics of IkBa Probed by NMR. FASEB Journal, 2007, 21, A655.	0.2	0

#	Article	IF	CITATIONS
289	Structural Basis for Cooperative Transcription Factor Binding to the CBP Coactivator. FASEB Journal, 2012, 26, lb266.	0.2	0
290	More pandemic reflections. Biophysical Journal, 2021, 120, E1-E2.	0.2	0
291	Editors' Note. Biophysical Journal, 2020, 119, E1.	0.2	0