Pavlos Xanthopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8878227/publications.pdf

Version: 2024-02-01

471509 501196 37 837 17 28 citations h-index g-index papers 37 37 37 583 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Confinement in electron heated plasmas in Wendelstein 7-X and ASDEX Upgrade; the necessity to control turbulent transport. Nuclear Fusion, 2022, 62, 016015.	3.5	7
2	Turbulence mitigation in maximum-J stellarators with electron-density gradient. Journal of Plasma Physics, 2022, 88, .	2.1	11
3	Electrostatic gyrokinetic simulations in Wendelstein 7-X geometry: benchmark between the codes <tt>stella</tt> and <tt>GENE</tt> . Journal of Plasma Physics, 2022, 88, .	2.1	2
4	Heat pulse propagation and anomalous electron heat transport measurements on the optimized stellarator W7-X. Nuclear Fusion, 2021, 61, 056001.	3.5	3
5	Calculating the linear critical gradient for the ion-temperature-gradient mode in magnetically confined plasmas. Journal of Plasma Physics, 2021, 87, .	2.1	3
6	Ion temperature clamping in Wendelstein 7-X electron cyclotron heated plasmas. Nuclear Fusion, 2021, 61, 116072.	3.5	27
7	Modeling and measurement of energetic particle slowing down in Wendelstein 7-X. Nuclear Fusion, 2021, 61, 096005.	3.5	15
8	Impact of Magnetic Field Configuration on Heat Transport in Stellarators and Heliotrons. Physical Review Letters, 2021, 127, 225001.	7.8	8
9	Turbulence Mechanisms of Enhanced Performance Stellarator Plasmas. Physical Review Letters, 2020, 125, 075001.	7.8	32
10	Linear gyrokinetics of electron–positron plasmas in closed field-line systems. Journal of Plasma Physics, 2020, 86, .	2.1	5
11	Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. II. Non-axisymmetric systems. Physics of Plasmas, 2020, 27, .	1.9	4
12	High-performance plasmas after pellet injections in Wendelstein 7-X. Nuclear Fusion, 2020, 60, 066011.	3.5	48
13	Suppression of electrostatic micro-instabilities in maximum-J stellarators. Plasma Physics and Controlled Fusion, 2020, 62, 035005.	2.1	37
14	Global gyrokinetic simulations of ITG turbulence in the magnetic configuration space of the Wendelstein 7-X stellarator. Plasma Physics and Controlled Fusion, 2020, 62, 105005.	2.1	17
15	A comparison of turbulent transport inÂaÂquasi-helical and a quasi-axisymmetricÂstellarator. Journal of Plasma Physics, 2019, 85, .	2.1	12
16	Ion temperature gradient turbulence modification in quasi-axisymmetry. Physics of Plasmas, 2019, 26, .	1.9	2
17	Stellarators Resist Turbulent Transport on the Electron Larmor Scale. Physical Review Letters, 2019, 122, 035002.	7.8	17
18	Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas. Journal of Plasma Physics, 2018, 84, .	2.1	20

#	Article	IF	CITATIONS
19	First steps towards modeling of ion-driven turbulence in Wendelstein 7-X. Nuclear Fusion, 2018, 58, 016017.	3.5	3
20	Linear electrostatic gyrokinetics for electron–positron plasmas. Journal of Plasma Physics, 2018, 84, .	2.1	7
21	Strongly driven surface-global kinetic ballooning modes in general toroidal geometry. Journal of Plasma Physics, 2018, 84, .	2.1	4
22	Recent advances in stellarator optimization. Nuclear Fusion, 2017, 57, 126064.	3.5	31
23	TEM turbulence optimisation in stellarators. Plasma Physics and Controlled Fusion, 2016, 58, 014006.	2.1	21
24	System Code Analysis of HELIAS-Type Fusion Reactor and Economic Comparison With Tokamaks. IEEE Transactions on Plasma Science, 2016, 44, 1576-1585.	1.3	7
25	Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. I. Nearly axisymmetric systems. Physics of Plasmas, 2016, 23, 082516.	1.9	6
26	Intrinsic Turbulence Stabilization in a Stellarator. Physical Review X, 2016, 6, .	8.9	22
27	Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator. Physics of Plasmas, 2015, 22, .	1.9	26
28	Systems studies of HELIAS power plants and comparison to tokamaks. , 2015, , .		0
29	Advances in stellarator gyrokinetics. Nuclear Fusion, 2015, 55, 053030.	3.5	42
30	Turbulent optimization of toroidal configurations. Plasma Physics and Controlled Fusion, 2014, 56, 094001.	2.1	14
31	Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode. Physics of Plasmas, 2014, 21, .	1.9	40
32	Controlling Turbulence in Present and Future Stellarators. Physical Review Letters, 2014, 113, 155001.	7.8	70
33	Collisionless microinstabilities in stellarators. II. Numerical simulations. Physics of Plasmas, 2013, 20, .	1.9	29
34	Stellarator and tokamak plasmas: a comparison. Plasma Physics and Controlled Fusion, 2012, 54, 124009.	2.1	111
35	Optimizing Stellarators for Turbulent Transport. Physical Review Letters, 2010, 105, 095004.	7.8	55
36	A geometry interface for gyrokinetic microturbulence investigations in toroidal configurations. Physics of Plasmas, 2009, 16, .	1.9	64

#	Article	IF	CITATIONS
37	Impact of the temperature ratio on turbulent impurity transport in Wendelstein 7-X. Nuclear Fusion, 0,	3.5	15