Zhengbin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8878054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical and surface analytical studies of transition metal bipyridine dicarboxylic acid complexes as corrosion inhibitors for a mild steel in HCl solution. Journal of Adhesion Science and Technology, 2022, 36, 567-583.	2.6	5
2	Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel. Journal of Materials Science and Technology, 2022, 107, 197-206.	10.7	61
3	Effect of thermally induced B2 phase on the corrosion behavior of an Al0.3CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2022, 903, 163886.	5.5	27
4	Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel. Corrosion Science, 2022, 199, 110210.	6.6	44
5	Nicotinic acid derivatives as corrosion inhibitors for mild steel in hydrochloric acid solutions: an experimental and computational chemistry study. Journal of Adhesion Science and Technology, 2021, 35, 63-80.	2.6	21
6	Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel with Hydrogen Charging. Jom, 2021, 73, 1165-1172.	1.9	31
7	Critical flow velocity phenomenon in erosion-corrosion of pipelines: determination methods, mechanisms and applications. Journal of Pipeline Science and Engineering, 2021, 1, 63-73.	4.8	25
8	Effect of Impact Angle on the Critical Flow Velocity for Erosion–Corrosion of 304 Stainless Steel in Simulated Sand-Containing Sea Water. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	2
9	Under-Deposit Corrosion of Carbon Steel Beneath Full Coverage of CaCO3 Deposit Layer under Different Atmospheres. Journal of Materials Engineering and Performance, 2021, 30, 7552-7563.	2.5	12
10	Oxygen impurity improving corrosion resistance of a Zr-based bulk metallic glass in 3.5Âwt% NaCl solution. Corrosion Science, 2021, 192, 109867.	6.6	22
11	Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion. Journal of Materials Science and Technology, 2021, 89, 158-166.	10.7	14
12	Inhibition performance of benzimidazole derivatives with different heteroatoms on the under-deposit corrosion of carbon steel in CO2-saturated solution. Corrosion Science, 2021, 192, 109841.	6.6	32
13	Effect of Ni Interlayer on Cavitation Erosion Resistance of NiTi Cladding by Tungsten Inert Gas (TIG) Surfacing Process. Acta Metallurgica Sinica (English Letters), 2020, 33, 415-424.	2.9	26
14	The Role of Carbon Steel Corrosion Process on CaCO 3 Scaling in Deoxidized Oilfield Injection Water. ChemistrySelect, 2020, 5, 12039-12044.	1.5	2
15	On the critical flow velocity for erosion-corrosion of Ni-based alloys in a saline-sand solution. Wear, 2020, 458-459, 203417.	3.1	5
16	The Effects of Sand Particles on the Synergy of Cavitation Erosion-Corrosion of MIG Welding Stainless Steel Coating in Saline Water. Scanning, 2020, 2020, 1-10.	1.5	2
17	Effects of Laser Scanning Speed on Microstructure, Microhardness, and Corrosion Behavior of Laser Cladding Ni45 Coatings. Journal of Chemistry, 2020, 2020, 1-11.	1.9	30
18	Cavitation Erosion and Corrosion Behavior of NiTi Cladding with Cu and Nb Interlayers. Journal of Materials Engineering and Performance, 2020, 29, 3840-3851.	2.5	5

ZHENGBIN WANG

#	Article	IF	CITATIONS
19	On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products. Journal of Materials Science and Technology, 2020, 54, 95-104.	10.7	31
20	A new method to obtain the repassivation time of passive materials based on the single particle impingement. Corrosion Science, 2020, 170, 108717.	6.6	2
21	Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions. Wear, 2020, 450-451, 203258.	3.1	25
22	Can the Prior Cathodic Polarisation Treatment Remove the Air-Formed Surface Film and Is It Necessary for the Potentiodynamic Polarisation Test?. Acta Metallurgica Sinica (English Letters), 2020, 33, 839-845.	2.9	9
23	Interaction between pitting corrosion and critical flow velocity for erosion-corrosion of 304 stainless steel under jet slurry impingement. Corrosion Science, 2019, 158, 108084.	6.6	32
24	Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations. Acta Metallurgica Sinica (English Letters), 2019, 32, 1470-1482.	2.9	18
25	On the critical flow velocity for erosion-corrosion in local eroded regions under liquid-solid jet impingement. Wear, 2019, 422-423, 94-99.	3.1	26
26	The role of surface film on the critical flow velocity for erosion-corrosion of pure titanium. Tribology International, 2019, 133, 67-72.	5.9	26
27	Effects of dissolved oxygen on the electrochemical corrosion behavior of pure titanium in fluoride-containing weakly acidic solutions. Journal of Solid State Electrochemistry, 2018, 22, 2083-2093.	2.5	8
28	Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions. Corrosion Science, 2018, 130, 203-217.	6.6	105
29	Comparison of critical flow velocity for erosion-corrosion of six stainless steels in 3.5 wt% NaCl solution containing 2 wt% silica sand particles. Wear, 2018, 416-417, 62-71.	3.1	25
30	Cavitation Erosion and Jet Impingement Erosion Behavior of the NiTi Coating Produced by Air Plasma Spraying. Coatings, 2018, 8, 346.	2.6	27
31	Corrosion Protection Performance of Nano-SiO2/Epoxy Composite Coatings in Acidic Desulfurized Flue Gas Condensates. Journal of Materials Engineering and Performance, 2016, 25, 3880-3889.	2.5	16
32	Evaluation of the dissolved oxygen-related electrochemical behavior of pure titanium in acidic fluoride-containing solutions. Journal of Solid State Electrochemistry, 2016, 20, 3459-3471.	2.5	19
33	Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corrosion Science, 2016, 103, 50-65.	6.6	246
34	Determination and explanation of the pH-related critical fluoride concentration of pure titanium in acidic solutions using electrochemical methods. Electrochimica Acta, 2015, 170, 300-310.	5.2	48
35	Corrosion Behaviors of Pure Titanium and Its Weldment in Simulated Desulfurized Flue Gas Condensates in Thermal Power Plant Chimney. Acta Metallurgica Sinica (English Letters), 2015, 28, 477-486.	2.9	12
36	Thermal Residual Stresses in W Fibers/Zr-based Metallic Glass Composites by High-energy Synchrotron X-ray Diffraction. Journal of Materials Science and Technology, 2015, 31, 159-163.	10.7	13

#	Article	IF	CITATIONS
37	The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05M sulfuric acid. Electrochimica Acta, 2014, 135, 526-535.	5.2	180