Martin MaÅ;ka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8877836/publications.pdf

Version: 2024-02-01

	623188	676716
2,097	14	22
citations	h-index	g-index
34	34	3124
		citing authors
		3
	2,097 citations 34 docs citations	2,097 14 citations h-index 34 34

#	Article	IF	Citations
1	Objective comparison of particle tracking methods. Nature Methods, 2014, 11, 281-289.	9.0	805
2	An objective comparison of cell-tracking algorithms. Nature Methods, 2017, 14, 1141-1152.	9.0	399
3	A benchmark for comparison of cell tracking algorithms. Bioinformatics, 2014, 30, 1609-1617.	1.8	345
4	Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis. PLoS ONE, 2017, 12, e0171417.	1.1	116
5	Segmentation and Shape Tracking of Whole Fluorescent Cells Based on the Chan–Vese Model. IEEE Transactions on Medical Imaging, 2013, 32, 995-1006.	5.4	86
6	Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs. PLoS ONE, 2015, 10, e0144959.	1.1	68
7	TEM ExosomeAnalyzer: a computerâ€assisted software tool for quantitative evaluation of extracellular vesicles in transmission electron microscopy images. Journal of Extracellular Vesicles, 2019, 8, 1560808.	5.5	36
8	Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images. Scientific Reports, 2019, 9, 13211.	1.6	32
9	FiloGen: A Model-Based Generator of Synthetic 3-D Time-Lapse Sequences of Single Motile Cells With Growing and Branching Filopodia. IEEE Transactions on Medical Imaging, 2018, 37, 2630-2641.	5.4	27
10	Segmentation of Touching Cell Nuclei Using a Two-Stage Graph Cut Model. Lecture Notes in Computer Science, 2009, , 410-419.	1.0	26
11	BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows. Patterns, 2020, 1, 100040.	3.1	25
12	3-D Quantification of Filopodia in Motile Cancer Cells. IEEE Transactions on Medical Imaging, 2019, 38, 862-872.	5.4	19
13	CytoPacq: a web-interface for simulating multi-dimensional cell imaging. Bioinformatics, 2019, 35, 4531-4533.	1.8	18
14	Smooth Chan–Vese segmentation via graph cuts. Pattern Recognition Letters, 2012, 33, 1405-1410.	2.6	14
15	On Simulating 3D Fluorescent Microscope Images. Lecture Notes in Computer Science, 2007, , 309-316.	1.0	14
16	Acquiarium: Free software for the acquisition and analysis of 3D images of cells in fluorescence microscopy. , 2009, , .		13
17	Segmentation of actin-stained 3D fluorescent cells with filopodial protrusions using convolutional neural networks., 2018,,.		8
18	A Fast Level Set-Like Algorithm for Region-Based Active Contours. Lecture Notes in Computer Science, 2010, , 387-396.	1.0	6

#	Article	IF	CITATIONS
19	The role of chromatin condensation during granulopoiesis in the regulation of gene cluster expression. Epigenetics, 2010, 5, 758-766.	1.3	5
20	Model-based generation of synthetic 3D time-lapse sequences of motile cells with growing filopodia. , 2017, , .		5
21	Fast tracking of fluorescent cells based on the Chan-Vese model. , 2012, , .		4
22	On proper simulation of phenomena influencing image formation in fluorescence microscopy. , 2014, , .		4
23	A Two-Phase Segmentation of Cell Nuclei Using Fast Level Set-Like Algorithms. Lecture Notes in Computer Science, 2009, , 390-399.	1.0	3
24	Quantification of the 3D collagen network geometry in confocal reflection microscopy. , 2015, , .		3
25	Automatic Detection and Segmentation of Exosomes in Transmission Electron Microscopy. Lecture Notes in Computer Science, 2016, , 318-325.	1.0	3
26	Toward Robust Fully 3D Filopodium Segmentation and Tracking in Time-Lapse Fluorescence Microscopy. , 2019, , .		3
27	Characterization of the role of collagen network structure and composition in cancer cell migration., 2015, 2015, 8139-42.		2
28	Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Multiple Mutually Interacting Motile Cells withÂFilopodia. Lecture Notes in Computer Science, 2018, , 71-79.	1.0	2
29	Automatic Fusion of Segmentation and Tracking Labels. Lecture Notes in Computer Science, 2019, , 446-454.	1.0	2
30	A Comparison of Fast Level Set-Like Algorithms for Image Segmentation in Fluorescence Microscopy. , 2007, , 571-581.		2
31	A Fast Level Set-Like Algorithm with Topology Preserving Constraint. Lecture Notes in Computer Science, 2009, , 930-938.	1.0	1
32	Automatic quantification of filopodia-based cell migration. , 2013, , .		0
33	Particle Tracking Accuracy Measurement Based on Comparison of Linear Oriented Forests. , 2017, , .		O