
Malou Henriksen-Lacey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8877805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust Encapsulation of Biocompatible Gold Nanosphere Assemblies for Bioimaging via Surface Enhanced Raman Scattering. Advanced Optical Materials, 2022, 10, .	3.6	5
2	SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging. ACS Applied Materials & Interfaces, 2022, 14, 20708-20719.	4.0	15
3	Challenges for optical nanothermometry in biological environments. Chemical Society Reviews, 2022, 51, 4223-4242.	18.7	38
4	Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics. ACS Sensors, 2022, 7, 1747-1756.	4.0	7
5	SERSTEM: An app for the statistical analysis of correlative SERS and TEM imaging and evaluation of SERS tags performance. Journal of Raman Spectroscopy, 2021, 52, 355-365.	1.2	9
6	Live-Cell Surface-Enhanced Raman Spectroscopy Imaging of Intracellular pH: From Two Dimensions to Three Dimensions. ACS Sensors, 2020, 5, 3194-3206.	4.0	32
7	3Dâ€Printed Biocompatible Scaffolds with Builtâ€In Nanoplasmonic Sensors. Advanced Functional Materials, 2020, 30, 2005407.	7.8	24
8	Shielded Silver Nanorods for Bioapplications. Chemistry of Materials, 2020, 32, 5879-5889.	3.2	30
9	Reversible Control of Protein Corona Formation on Gold Nanoparticles Using Host–Guest Interactions. ACS Nano, 2020, 14, 5382-5391.	7.3	48
10	Using SERS Tags to Image the Threeâ€Dimensional Structure of Complex Cell Models. Advanced Functional Materials, 2020, 30, 1909655.	7.8	44
11	Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry. Theranostics, 2019, 9, 7298-7312.	4.6	32
12	Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems. Advanced Functional Materials, 2019, 29, 1809071.	7.8	23
13	Size-Dependent Transport and Cytotoxicity of Mitomycin-Gold Nanoparticle Conjugates in 2D and 3D Mammalian Cell Models. Bioconjugate Chemistry, 2019, 30, 242-252.	1.8	17
14	Reducing Protein Corona Formation and Enhancing Colloidal Stability of Gold Nanoparticles by Capping with Silica Monolayers. Chemistry of Materials, 2019, 31, 57-61.	3.2	29
15	Cellular Uptake of Gold Nanoparticles Triggered by Host–Guest Interactions. Journal of the American Chemical Society, 2018, 140, 4469-4472.	6.6	61
16	Biocompatible, Multiresponsive Nanogel Composites for Codelivery of Antiangiogenic and Chemotherapeutic Agents. Chemistry of Materials, 2017, 29, 2303-2313.	3.2	29
17	Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale, 2017, 9, 9467-9480.	2.8	145
18	Current Challenges toward In Vitro Cellular Validation of Inorganic Nanoparticles. Bioconjugate Chemistry, 2017, 28, 212-221.	1.8	78

MALOU HENRIKSEN-LACEY

#	Article	IF	CITATIONS
19	Plasmonic Surfaces for Cell Growth and Retrieval Triggered by Nearâ€Infrared Light. Angewandte Chemie - International Edition, 2016, 55, 974-978.	7.2	47
20	Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. Journal of Physical Chemistry C, 2016, 120, 20860-20868.	1.5	69
21	Surface Enhanced Raman Scattering Encoded Gold Nanostars for Multiplexed Cell Discrimination. Chemistry of Materials, 2016, 28, 6779-6790.	3.2	147
22	Tunable Nanoparticle and Cell Assembly Using Combined Selfâ€Powered Microfluidics and Microcontact Printing. Advanced Functional Materials, 2016, 26, 8053-8061.	7.8	18
23	Inulin coated plasmonic gold nanoparticles as a tumor-selective tool for cancer therapy. Journal of Materials Chemistry B, 2016, 4, 1150-1155.	2.9	47
24	Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Materials Today, 2016, 19, 19-28.	8.3	249
25	Glycans as Biofunctional Ligands for Gold Nanorods: Stability and Targeting in Protein-Rich Media. Journal of the American Chemical Society, 2015, 137, 3686-3692.	6.6	97
26	Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods. Journal of Physical Chemistry Letters, 2015, 6, 2003-2008.	2.1	26
27	Hybrid Au–SiO ₂ Core–Satellite Colloids as Switchable SERS Tags. Chemistry of Materials, 2015, 27, 2540-2545.	3.2	60
28	Nice to know you. Science, 2015, 349, 1254-1254.	6.0	1
29	Theranostics: An Iron Oxide Nanocarrier for dsRNA to Target Lymph Nodes and Strongly Activate Cells of the Immune System (Small 24/2014). Small, 2014, 10, 5053-5053.	5.2	32
30	Effect of Incorporating Cholesterol into DDA:TDB Liposomal Adjuvants on Bilayer Properties, Biodistribution, and Immune Responses. Molecular Pharmaceutics, 2014, 11, 197-207.	2.3	37
31	An Iron Oxide Nanocarrier for dsRNA to Target Lymph Nodes and Strongly Activate Cells of the Immune System. Small, 2014, 10, 5054-5067.	5.2	21
32	Designing Liposomes as Vaccine Adjuvants. , 2013, , 181-203.		2
33	Iron oxide-filled micelles as ligands for fac-[M(CO)3]+ (M = 99mTc, Re). Chemical Communications, 2012, 48, 4211.	2.2	12
34	A cationic vaccine adjuvant based on a saturated quaternary ammonium lipid have different in vivo distribution kinetics and display a distinct CD4 T cell-inducing capacity compared to its unsaturated analog. Journal of Controlled Release, 2012, 160, 468-476.	4.8	101
35	Comparison of the Depot Effect and Immunogenicity of Liposomes Based on Dimethyldioctadecylammonium (DDA), $3\hat{l}^2-[\langle i \rangle N \langle i \rangle \langle i \rangle N \langle i \rangle \hat{a} \in 2, \langle i \rangle N \langle i \rangle \hat{a} \in 2$ -Dimethylaminoethane)carbomyl] Cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium Propane (DOTAP): Prolonged Liposome Retention Mediates Stronger Th1 Responses. Molecular Pharmaceutics. 2011. 8, 153-161.	2.3	96
36	Liposomal vaccine delivery systems. Expert Opinion on Drug Delivery, 2011, 8, 505-519.	2.4	120

#	Article	IF	CITATIONS
37	Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine, 2011, 29, 4761-4770.	1.7	65
38	The vesicle size of DDA:TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production. Journal of Controlled Release, 2011, 154, 131-137.	4.8	105
39	Microscopy imaging of liposomes: From coverslips to environmental SEM. International Journal of Pharmaceutics, 2011, 417, 138-150.	2.6	107
40	Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. Journal of Controlled Release, 2010, 142, 180-186.	4.8	182
41	Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. Journal of Controlled Release, 2010, 145, 102-108.	4.8	152
42	Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. Journal of Controlled Release, 2010, 147, 342-349.	4.8	194
43	Radiolabelling of Antigen and Liposomes for Vaccine Biodistribution Studies. Pharmaceutics, 2010, 2, 91-104.	2.0	14