Alicia J El Haj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8877796/publications.pdf

Version: 2024-02-01

42 1,557 papers citations

331538

21
302012

39
h-index
g-index

46 46 all docs docs citations

46 times ranked 2759 citing authors

#	Article	IF	CITATIONS
1	Hydrostatic pressure promotes chondrogenic differentiation and microvesicle release from human embryonic and bone marrow stem cells. Biotechnology Journal, 2022, 17, e2100401.	1.8	12
2	Remotely Actuated Magnetic Nanocarpets for Bone Tissue Engineering: Nonâ€Invasive Modulation of Mechanosensitive Ion Channels for Enhanced Osteogenesis. Advanced Functional Materials, 2022, 32, .	7.8	8
3	Regenerative medicine meets mathematical modelling: developing symbiotic relationships. Npj Regenerative Medicine, 2021, 6, 24.	2.5	31
4	Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model. Cells, 2021, 10, 1776.	1.8	3
5	Predicting Bone Formation in Mesenchymal Stromal Cell-Seeded Hydrogels Using Experiment-Based Mathematical Modeling. Tissue Engineering - Part A, 2020, 26, 1014-1023.	1.6	3
6	Ultra Short Echo Time MRI of Iron-Labelled Mesenchymal Stem Cells in an Ovine Osteochondral Defect Model. Scientific Reports, 2020, 10, 8451.	1.6	13
7	Magnetic Mechanoactivation of Wnt Signaling Augments Dopaminergic Differentiation of Neuronal Cells. Advanced Biology, 2019, 3, e1900091.	3.0	16
8	Regulation of endothelial cell arrangements within hMSC – HUVEC co-cultured aggregates. Biomedical Journal, 2019, 42, 166-177.	1.4	8
9	Investigation of Conjunctival Fibrosis Response Using a 3D Glaucoma Tenon's Capsule + Conjunctival Model., 2019, 60, 605.		17
10	<i>In vitro</i> evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. Journal of Biomedical Materials Research - Part A, 2019, 107, 828-838.	2.1	21
11	Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model. Stem Cell Research and Therapy, 2019, 10, 25.	2.4	37
12	Dynamic Culture Substrates That Mimic the Topography of the Epidermal–Dermal Junction. Tissue Engineering - Part A, 2019, 25, 214-223.	1.6	10
13	Key developments that impacted the field of mechanobiology and mechanotransduction. Journal of Orthopaedic Research, 2018, 36, 605-619.	1.2	43
14	Translation of remote control regenerative technologies for bone repair. Npj Regenerative Medicine, 2018, 3, 9.	2.5	28
15	Tenogenic Differentiation of Human Embryonic Stem Cells. Tissue Engineering - Part A, 2018, 24, 361-368.	1.6	46
16	Remote regulation of magnetic particle targeted Wnt signaling for bone tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 173-184.	1.7	41
17	Hydrostatic pressure in combination with topographical cues affects the fate of bone marrowâ€derived human mesenchymal stem cells for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2018, 106, 629-640.	2.1	22
18	Magnetic ion channel activation of TREK1 in human mesenchymal stem cells using nanoparticles promotes osteogenesis in surrounding cells. Journal of Tissue Engineering, 2018, 9, 204173141880869.	2.3	31

#	Article	IF	Citations
19	A Perfusion Culture System for Assessing Bone Marrow Stromal Cell Differentiation on PLGA Scaffolds for Bone Repair. Frontiers in Bioengineering and Biotechnology, 2018, 6, 161.	2.0	19
20	The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Scientific Reports, 2017, 7, 39922.	1.6	54
21	Fluorescent Labeling of Collagen Production by Cells for Noninvasive Imaging of Extracellular Matrix Deposition. Tissue Engineering - Part C: Methods, 2017, 23, 228-236.	1.1	6
22	Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging. Advances in Experimental Medicine and Biology, 2017, 1035, 3-18.	0.8	17
23	Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions. Colloids and Surfaces B: Biointerfaces, 2017, 159, 445-453.	2.5	19
24	Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2333-2348.	1.3	41
25	Therapeutic Benefit for Late, but Not Early, Passage Mesenchymal Stem Cells on Pain Behaviour in an Animal Model of Osteoarthritis. Stem Cells International, 2017, 2017, 1-11.	1.2	11
26	Immobilized WNT Proteins Act as a Stem Cell Niche for Tissue Engineering. Stem Cell Reports, 2016, 7, 126-137.	2.3	24
27	Defining a turnover index for the correlation of biomaterial degradation and cell based extracellular matrix synthesis using fluorescent tagging techniques. Acta Biomaterialia, 2016, 45, 133-142.	4.1	17
28	A comparative study of skin cell activities in collagen and fibrin constructs. Medical Engineering and Physics, 2016, 38, 854-861.	0.8	22
29	Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E291-9.	3.3	88
30	Online monitoring of mechanical properties of three-dimensional tissue engineered constructs for quality assessment. Proceedings of SPIE, 2016, , .	0.8	0
31	Overcoming translational challenges – The delivery of mechanical stimuli in vivo. International Journal of Biochemistry and Cell Biology, 2015, 69, 162-172.	1.2	14
32	Remote Activation of the Wnt/ \hat{l}^2 -Catenin Signalling Pathway Using Functionalised Magnetic Particles. PLoS ONE, 2015, 10, e0121761.	1,1	56
33	In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors. PLoS ONE, 2015, 10, e0145080.	1.1	67
34	An <i>in vitro</i> model of mesenchymal stem cell targeting using magnetic particle labelling. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 724-733.	1.3	29
35	Gelatin-Based Materials in Ocular Tissue Engineering. Materials, 2014, 7, 3106-3135.	1.3	248
36	Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen–elastin constructs. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38, 251-259.	1.5	51

#	Article	lF	CITATION
37	Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 45-55.	1.7	43
38	Remotely Activated Mechanotransduction via Magnetic Nanoparticles Promotes Mineralization Synergistically With Bone Morphogenetic Protein 2: Applications for Injectable Cell Therapy. Stem Cells Translational Medicine, 2014, 3, 1363-1374.	1.6	79
39	Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells – a rheumatoid arthritis mouse model. Stem Cell Research and Therapy, 2013, 4, 126.	2.4	57
40	Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering. Journal of Functional Biomaterials, 2012, 3, 642-687.	1.8	80
41	Chemical and Topographical Effects on Cell Differentiation and Matrix Elasticity in a Corneal Stromal Layer Model. Advanced Functional Materials, 2012, 22, 3641-3649.	7.8	80
42	Mechanical manipulation of bone and cartilage cells with â€~optical tweezers'. FEBS Letters, 1999, 459, 39-42.	1.3	40